16 research outputs found

    Computer-Assisted Analysis of Annuloplasty Rings

    No full text

    Segmentation of the Aortic Valve Apparatus in 3D Echocardiographic Images: Deformable Modeling of a Branching Medial Structure

    No full text
    3D echocardiographic (3DE) imaging is a useful tool for assessing the complex geometry of the aortic valve apparatus. Segmentation of this structure in 3DE images is a challenging task that benefits from shape-guided deformable modeling methods, which enable inter-subject statistical shape comparison. Prior work demonstrates the efficacy of using continuous medial representation (cm-rep) as a shape descriptor for valve leaflets. However, its application to the entire aortic valve apparatus is limited since the structure has a branching medial geometry that cannot be explicitly parameterized in the original cm-rep framework. In this work, we show that the aortic valve apparatus can be accurately segmented using a new branching medial modeling paradigm. The segmentation method achieves a mean boundary displacement of 0.6 ± 0.1 mm (approximately one voxel) relative to manual segmentation on 11 3DE images of normal open aortic valves. This study demonstrates a promising approach for quantitative 3DE analysis of aortic valve morphology

    Interactive-Automatic Segmentation and Modelling of the Mitral Valve

    No full text
    © 2019, Springer Nature Switzerland AG. Mitral valve regurgitation is the most common valvular disease, affecting 10% of the population over 75 years old. Left untreated, patients with mitral valve regurgitation can suffer declining cardiac health until cardiac failure and death. Mitral valve repair is generally preferred over valve replacement. However, there is a direct correlation between the volume of cases performed and surgical outcomes, therefore there is a demand for the ability of surgeons to practice repairs on patient specific models in advance of surgery. This work demonstrates a semi-automated segmentation method to enable fast and accurate modelling of the mitral valve that captures patient-specific valve geometry. This modelling approach utilizes 3D active contours in a user-in-the-loop system which segments first the atrial blood pool, then the mitral leaflets. In a group of 15 mitral valve repair patients, valve segmentation and modelling attains an overall accuracy (mean absolute surface distance) of 1.40±0.26mm, and an accuracy of 1.01±0.13mm when only comparing the extracted leaflet surface proximal to the ultrasound probe. Thus this image-based segmentation tool has the potential to improve the workflow for extracting patient-specific mitral valve geometry for 3D modelling of the valve

    Estimation of Cardiac Valve Annuli Motion with Deep Learning

    No full text
    Valve annuli motion and morphology, measured from non-invasive imaging, can be used to gain a better understanding of healthy and pathological heart function. Measurements such as long-axis strain as well as peak strain rates provide markers of systolic function. Likewise, early and late-diastolic filling velocities are used as indicators of diastolic function. Quantifying global strains, however, requires a fast and precise method of tracking long-axis motion throughout the cardiac cycle. Valve landmarks such as the insertion of leaflets into the myocardial wall provide features that can be tracked to measure global long-axis motion. Feature tracking methods require initialisation, which can be time-consuming in studies with large cohorts. Therefore, this study developed and trained a neural network to identify ten features from unlabeled long-axis MR images: six mitral valve points from three long-axis views, two aortic valve points and two tricuspid valve points. This study used manual annotations of valve landmarks in standard 2-, 3- and 4-chamber long-axis images collected in clinical scans to train the network. The accuracy in the identification of these ten features, in pixel distance, was compared with the accuracy of two commonly used feature tracking methods as well as the inter-observer variability of manual annotations. Clinical measures, such as valve landmark strain and motion between end-diastole and end-systole, are also presented to illustrate the utility and robustness of the method.</p
    corecore