554 research outputs found

    Zinc transporter HKE4 as a new target in antihormone resistance of breast cancer

    Get PDF
    Background Oestrogen receptor-positive breast cancers develop resistance to anti-oestrogens by utilising alternative growth factor pathways as observed in our tamoxifen-resistant cell line (TAMR). These include EGFR, IGF1-R and Src signalling as well as increased growth and invasion. Zinc is elevated in breast cancer tissue and has been demonstrated to activate certain growth factor signalling pathways. We have tested the expression level of members of the LIV-1 family of zinc influx transporters and discovered that HKE4 (SLC39A7, ZIP7), previously shown by us capable of increasing the intracellular zinc levels, has increased expression in TAMR. We have therefore investigated whether the development of the more aggressive phenotype observed in our TAMR cells, including activation of these signalling pathways as well as increased growth and invasion, is due to an increase of intracellular zinc and as a direct result of increased expression of HKE4. Methods All nine members of the LIV-1 subfamily of ZIP transporters were measured in our model of tamoxifen-resistant breast cancer using Affymetrix arrays. Zinc-induced activation of growth factor signalling pathway components was investigated by western blot and/or fluorescent microscopy. Short-term (15-min) treatments with 20 μM zinc included ionophore, whereas long-term (hours/days) did not. Recombinant LIV-1 family members with a V5 tag were expressed using pcDNA3.1/V5-His-TOPO vector, and siRNA (Dharmacon smartpools with relevant controls) was used to reduce endogenous expression. Results HKE4 (SLC39A7), a ZIP transporter from the LIV-1 subfamily, was discovered to be elevated in TAMR cells by Affymetrix analysis and confirmed by PCR and western blot. We have observed that our TAMR cells have a twofold increase in intracellular zinc compared with wild-type cells, using the zinc-specific fluorescent dye Newport Green. Short-term zinc treatment of TAMR cells activates the signalling pathways implicated in antihormone-resistant proliferation and is reduced by both the zinc chelator TPEN and the Src kinase inhibitor SU6556. The same effects are observed after longer term (6 days) zinc treatment with additional increases in cell growth and invasion through Matrigel. Since we have previously demonstrated that HKE4 is capable of increasing intracellular zinc in cells and, more recently, that these TAMR have elevated intracellular zinc levels, we have tested the hypothesis that elevated HKE4 expression is directly responsible for the aggressive phenotype observed in our TAMR cells. Reducing HKE4 levels by siRNA demonstrated a role for this molecule in driving the zinc-induced activation of multiple signalling pathways. In the presence of siRNA for HKE4, the previously observed zinc-induced activation of EGFR, Src, and IGF1-R was eradicated and the EGF-stimulated activation was also decreased. Additionally, we have demonstrated the converse by transfecting recombinant HKE4 into wild-type cells and/or treating them with zinc to observe the activation of these signalling pathways and increases in invasive capability. Interestingly, we have observed a similar role of HKE4 in our model of faslodex-resistant breast cancer. Conclusion The presented results propose that HKE4, a member of the LIV-1 subfamily of ZIP transporters, is directly involved in the activation of the aggressive phenotype observed with the development of antihormone resistance, and as such is a potential new target for the prevention of resistance to antihormones in breast cancer progression

    Fulvestrant-induced expression of erbB3 and erbB4 sensitizes ER-positive breast cancer cells to heregulins

    Get PDF
    We have previously reported that induction of EGFR and erbB2 in response to antihormones may provide an early mechanism allowing breast cancer cells to evade the growth inhibitory action of such therapies and ultimately drive resistant growth. More recently, another member of the erbB receptor family, erbB3, has been implicated in antihormone resistance in breast cancer. In the present study we have investigated whether induction of erbB3, and related family member erbB4, may provide an alternative resistance mechanism to antihormonal action in a panel of four ER-positive breast cancer cell lines. MCF-7, T47D, BT474 and MDAMB361 cell lines were exposed to fulvestrant (100 nM) for 7 days, and effects on erbB3/4 signalling and growth were assessed. Effects of the erbB3/4 ligand heregulin-β1 were also examined in the absence and presence of fulvestrant. Fulvestrant potently reduced ER expression and transcriptional activity and significantly inhibited growth in all four cell lines. However, alongside this inhibitory activity, fulvestrant also consistently induced protein expression and activity of erbB4 in the four cell lines and also promoted erbB3, erbB2 and EGFR protein expression and activity in MCF-7 and T47D cells. Consequently, fulvestrant treatment sensitised each cell line to the actions of heregulin-β1 with enhanced erbB3/4-driven signalling activity and significant increases in cell proliferation being observed when compared with untreated cells. Indeed, in T47D and MDAMB361, heregulin-β1 was converted from a ligand having negligible or suppressive growth activity into one that potently promoted cell proliferation. Consequently, fulvestrant-induced growth inhibition was completely overridden by heregulin-β1 in all four cell lines. In conclusion, these findings would suggest that although antihormones, such as fulvestrant, may have potent acute growth inhibitory activity in ER-positive breast cancer cells, their ability to induce and sensitize cells to growth factors, such as heregulins, may serve to reduce and ultimately limit their inhibitory activity

    Combination of letrozole, metronomic cyclophosphamide and sorafenib is well-tolerated and shows activity in patients with primary breast cancer

    Get PDF
    PURPOSE: To assess whether the combination of letrozole, metronomic cyclophosphamide and sorafenib (LCS) is well tolerated and shows activity in primary breast cancer (BC). METHODS:Thirteen oestrogen receptor-positive, postmenopausal, T2-4, N0-1 BC patients received the LCS combination for 6 months. In these patients we examined the pharmacokinetics of sorafenib and cyclophosphamide, toxicity of the regimen, the clinical response to therapy and changes in the levels of biologically relevant biomarkers. RESULTS:Adequate plasma concentrations of sorafenib were achieved in patients when it was dosed in combination with L+C. The mean plasma concentrations of C were consistently lower following administration of LCS, compared with administration of L+C only. The most common drug-related grade 3/4 adverse events were skin rash (69.3%), hand-foot skin reaction (69.3%) and diarrhoea (46.1%). According to RECIST Criteria, a clinical complete response was observed in 6 of 13 patients. A significant reduction in tumour size, evaluated with MRI, was also observed between baseline and 14 days of treatment in all 13 patients (P=0.005). A significant reduction in SUV uptake, measured by (18)FDG-PET/CT, was observed in all patients between baseline and 30 days of treatment (P=0.015) and between baseline and definitive surgery (P=0.0002). Using modified CT Criteria, a response was demonstrated in 8 out of 10 evaluable patients at 30 days and in 11 out of 13 evaluable patients at the definitive surgery. A significant reduction in Ki67 expression was observed in all patients at day 14 compared with baseline (P<0.00001) and in 9 out of 13 patients at the definitive surgery compared with baseline (P<0.03). There was also a significant suppression of CD31 and VEGF-A expression in response to treatment (P=0.01 and P=0.007, respectively).CONCLUSIONS:The LCS combination is feasible and tolerable. The tumour response and target biomarker modulation indicate that the combination is clinically and biologically active

    Microarray studies reveal novel genes associated with endocrine resistance in breast cancer

    Get PDF
    Background Endocrine resistance is a major hurdle in breast cancer management, and determining the underlying factors driving its growth and aggressive behaviour should vastly improve treatment. Methods Microarray technology (BD Atlas Plastic Human 12 K Microarrays; GeneSifter software), verified by PCR, western blotting and immunocytochemisty, was used to identify genes increased in acquired resistant models to tamoxifen (TamR) or faslodex (FasR) as potential predictive/prognostic markers and new therapeutic targets. Results Alongside known breast cancer genes (β-catenin, PEA3, vitronectin, CD44), two novel genes in endocrine resistance were revealed (the latter never previously described in breast cancer): a securin/cell cycle regulator Pituitary Tumour Transforming Gene-1 (PTTG1), and GDNF receptor-alpha 3 (GFRα3) reported to promote cell survival signalling via RET coreceptor. Altered levels of PTTG1, GFRα3, or their associated family members were observed in further endocrine resistant states, including an additional faslodex resistant model that has progressed to a highly-aggressive state (FasR-Lt) and XMCF-7 cells resistant to oestrogen deprivation. PTTG1 and GFRα3 induction were also implicated in limiting response to anti-EGFR agents currently in breast cancer trials, with GFRα3 ligand (artemin) largely overcoming drug response. mRNA studies in clinical disease revealed PTTG1 associated with lymph node spread, high tumour grade and proliferation, while GFRα3 was enriched in ER-negative tumours and those expressing EGFR, profiles implying roles in clinical resistance and aggressive tumour behaviour. Promisingly, PTTG1 or GFRα3 siRNA knockdown promoted cell kill and inhibited proliferation in the resistant models. Conclusion Cumulatively, these data indicate PTTG1 and GFRα3 may provide useful biomarkers, and perhaps clinically relevant therapeutic targets for multiple resistant states

    Overexpression of CD44 in acquired tamoxifen-resistant breast cancer cells augments their migratory response to heregulin beta 1

    Get PDF
    Background Acquired endocrine resistance in breast cancer cells is accompanied by altered growth factor receptor signalling [1] and a highly migratory cell phenotype [2]. Interestingly, in tamoxifen-resistant (TamR) MCF7 cells, our microarray analysis has demonstrated elevated levels of CD44, a transmembrane glycoprotein known to interact with, and modulate the function of, growth factor receptors [3]. Here we have explored the role of CD44 as a modulator of heregulin beta-1-induced migratory signalling in TamR cells. Methods Expression of CD44 (standard and v3 isoforms) were confirmed by RT-PCR and western blotting and their association with erbB family members determined by both immunofluorescence microscopy and immunoprecipitation. Activation of intracellular signalling following heregulin beta 1 treatment (10 ng/ml) in the presence or absence of CD44 (using siRNA-mediated inhibition) was determined by western blotting using phosphospecific antibodies. Cellular migration was determined by seeding cells (control and CD44 siRNA-treated) into fibronectin-coated transwell chambers (8.0 μm pore size) in the presence or absence of heregulin beta 1. After 24 hours, migratory cells were fixed, stained with crystal violet and counted. Results Both standard and v3 isoforms of CD44 were overexpressed in TamR cells at both gene and protein levels (mean fold increase in CD44s protein (TamR versus MCF7): 4.26 ± 1.2, P < 0.05). Moreover, CD44s and v3 colocalised with Her2 and Her3 receptors at the cell surface and were also detectable in Her2/Her3 cellular immunoprecipitates. Treatment of TamR cells with heregulin resulted in phosphorylation of erbB receptors together with a number of downstream signalling intermediates, including Akt, Src and FAK, and resulted in enhanced cellular migration. Significantly, heregulin-induced intracellular signalling was dramatically reduced in cells in which the expression of CD44 was suppressed (via siRNA), with a corresponding loss of heregulin-induced migratory behaviour (mean fold change in cell migration versus untreated control: 6.7 ± 1.1, P < 0.05 (heregulin beta 1); 1.8 ± 0.9 (CD44 siRNA); 1.47 ± 0.6, P < 0.05 (heregulin beta 1 + CD44 siRNA)). Conclusion These data demonstrate a role for CD44 as a modulator of erbB receptor function in endocrine-resistant breast cancer cells, where it augments heregulin beta 1 migratory signalling

    An internal ribosome entry site in the 5′ untranslated region of epidermal growth factor receptor allows hypoxic expression

    Get PDF
    The expression of epidermal growth factor receptor (EGFR/ERBB1/HER1) is implicated in the progress of numerous cancers, a feature that has been exploited in the development of EGFR antibodies and EGFR tyrosine kinase inhibitors as anti-cancer drugs. However, EGFR also has important normal cellular functions, leading to serious side effects when EGFR is inhibited. One damaging characteristic of many oncogenes is the ability to be expressed in the hypoxic conditions associated with the tumour interior. It has previously been demonstrated that expression of EGFR is maintained in hypoxic conditions via an unknown mechanism of translational control, despite global translation rates generally being attenuated under hypoxic conditions. In this report, we demonstrate that the human EGFR 5′ untranslated region (UTR) sequence can initiate the expression of a downstream open reading frame via an internal ribosome entry site (IRES). We show that this effect is not due to either cryptic promoter activity or splicing events. We have investigated the requirement of the EGFR IRES for eukaryotic initiation factor 4A (eIF4A), which is an RNA helicase responsible for processing RNA secondary structure as part of translation initiation. Treatment with hippuristanol (a potent inhibitor of eIF4A) caused a decrease in EGFR 5′ UTR-driven reporter activity and also a reduction in EGFR protein level. Importantly, we show that expression of a reporter gene under the control of the EGFR IRES is maintained under hypoxic conditions despite a fall in global translation rates

    Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice

    Get PDF
    Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV) as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE) and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+) cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+) Arg-1(+) myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+) Arg-1(+) phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain
    corecore