2,039 research outputs found
Identification of volatiles released by diapausing brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae)
The brown marmorated stink bug, Halyomorpha halys, is an agricultural and urban pest that has become widely established as an invasive species of major concern in the USA and across Europe. This species forms large aggregations when entering diapause, and it is often these aggregations that are found by officials conducting inspections of internationally shipped freight. Identifying the presence of diapausing aggregations of H. halys using their emissions of volatile organic compounds (VOCs) may be a potential means for detecting and intercepting them during international freight inspections. Headspace samples were collected from aggregations of diapausing H. halys using volatile collection traps (VCTs) and solid phase microextraction. The only compound detected in all samples was tridecane, with small amounts of (E)-2-decenal found in most samples. We also monitored the release of defensive odors, following mechanical agitation of diapausing and diapause-disrupted adult H. halys. Diapausing groups were significantly more likely to release defensive odors than diapause-disrupted groups. The predominant compounds consistently found from both groups were tridecane, (E)-2-decenal, and 4-oxo-(E)-2-hexenal, with a small abundance of dodecane. Our findings show that diapausing H. halys do release defensive compounds, and suggest that volatile sampling may be feasible to detect H. halys in freight.Contributions by L.J.N. and E.G.B. were supported by the New Zealand government via
Ministry of Business, Innovation, and Employment core funding to Plant and Food Research and Scion (contract C04X1104), respectively, and the BetterBorder Biosecurity Collaboration (www.b3nz.org)
Ownership-dependent mating tactics of minor males of the beetle Librodor japonicus (Nitidulidae) with intra-sexual dimorphism of mandibles
Intra-sexual dimorphism is found in the weapons of many male beetles. Different behavioral tactics to access females between major and minor males, which adopt fighting and alternative tactics, respectively, are thought to maintain the male dimorphism. In these species major males have enlarged weapons that they use in fights with rival males. Minor males also have small weapons in some of these species, and it is unclear why these males possess weapons. We examined the hypothesis that minor males might adopt a fighting tactic when their status was relatively high in comparison with that of other males (e.g., ownership of a territory). We observed the behavioral tactics of major and minor males of the beetle Librodor japonicus, whose males have a dimorphism of their mandibles. Major males fought for resources, whereas minor males adopted two status-dependent tactics, fighting and sneaking, to access females, depending on their ownership of a sap site. We suggest that ownership status-dependent mating tactics in minor males may maintain the intra-sexual dimorphism in this beetle.</p
Postcopulatory sexual selection
The female reproductive tract is where competition between the sperm of different males takes place, aided and abetted by the female herself. Intense postcopulatory sexual selection fosters inter-sexual conflict and drives rapid evolutionary change to generate a startling diversity of morphological, behavioural and physiological adaptations. We identify three main issues that should be resolved to advance our understanding of postcopulatory sexual selection. We need to determine the genetic basis of different male fertility traits and female traits that mediate sperm selection; identify the genes or genomic regions that control these traits; and establish the coevolutionary trajectory of sexes
Interpopulation variation in female remating is attributable to female and male effects in Callosobruchus chinensis
The evolution of female multiple mating is best understood by consideration of male and female reproductive perspectives. Females should usually be selected to remate at their optimum frequencies whereas males should be selected to manipulate female remating to their advantage. Female remating behavior may therefore be changed by variation of male and female traits. In this study, our objective was to separate the effects of female and male strains on female remating for the adzuki bean beetle, Callosobruchus chinensis, for which there is interstrain variation in female remating frequency. We found that interstrain variation in female remating is primarily attributable to female traits, suggesting genetic variation in female receptivity to remating in C. chinensis. Some interstrain variation in female remating propensity was attributable to an interaction between female and male strains, however, with the males of some strains being good at inducing nonreceptivity in females from one high-remating strain whereas others were good at inducing copulation in nonvirgin females from the high-remating strain. There is, therefore, interstrain variation in male ability to deter females from remating and in male ability to mate successfully with nonvirgin females. These results suggest that mating traits have evolved along different trajectories in different strains of C. chinensis.</p
Sexual conflict maintains variation at an insecticide resistance locus
Background: The maintenance of genetic variation through sexually antagonistic selection is controversial, partly because specific sexually-antagonistic alleles have not been identified. The Drosophila DDT resistance allele (DDT-R) is an exception. This allele increases female fitness, but simultaneously decreases male fitness, and it has been suggested that this sexual antagonism could explain why polymorphism was maintained at the locus prior to DDT use. We tested this possibility using a genetic model and then used evolving fly populations to test model predictions. Results: Theory predicted that sexual antagonism is able to maintain genetic variation at this locus, hence explaining why DDT-R did not fix prior to DDT use despite increasing female fitness, and experimentally evolving fly populations verified theoretical predictions. Conclusions: This demonstrates that sexually antagonistic selection can maintain genetic variation and explains the DDT-R frequencies observed in nature
Engaging Undergraduates in Science Research: Not Just About Faculty Willingness.
Despite the many benefits of involving undergraduates in research and the growing number of undergraduate research programs, few scholars have investigated the factors that affect faculty members' decisions to involve undergraduates in their research projects. We investigated the individual factors and institutional contexts that predict faculty members' likelihood of engaging undergraduates in their research project(s). Using data from the Higher Education Research Institute's 2007-2008 Faculty Survey, we employ hierarchical generalized linear modeling to analyze data from 4,832 science, technology, engineering, and mathematics (STEM) faculty across 194 institutions to examine how organizational citizenship behavior theory and social exchange theory relate to mentoring students in research. Key findings show that faculty who work in the life sciences and those who receive government funding for their research are more likely to involve undergraduates in their research project(s). In addition, faculty at liberal arts or historically Black colleges are significantly more likely to involve undergraduate students in research. Implications for advancing undergraduate research opportunities are discussed
Cirsium species show disparity in patterns of genetic variation at their range-edge, despite similar patterns of reproduction and isolation
Genetic variation was assessed across the UK geographical range of Cirsium acaule and Cirsium heterophyllum. A decline in genetic diversity and increase in population divergence approaching the range edge of these species was predicted based on parallel declines in population density and seed production reported seperately. Patterns were compared with UK populations of the widespread Cirsium arvense.Populations were sampled along a latitudinal transect in the UK and genetic variation
assessed using microsatellite markers. Cirsium acaule
shows strong isolation by distance, a significant decline in diversity and an increase in divergence among range-edge populations. Geographical structure is also evident in
C. arvense, whereas no such patterns are seen in C.heterophyllum. There is a major disparity between patterns of genetic variation in C. acaule and
C. heterophyllum despite very similar patterns in seed production and population isolation in these species. This suggests it may be misleading to make assumptions
about the geographical structure of genetic variation within species based solely on the present-day reproduction and distribution of populations
The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria
Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel
Design and feasibility testing of a novel group intervention for young women who binge drink in groups
BackgroundYoung women frequently drink alcohol in groups and binge drinking within these natural drinking groups is common. This study describes the design of a theoretically and empirically based group intervention to reduce binge drinking among young women. It also evaluates their engagement with the intervention and the acceptability of the study methods.MethodsFriendship groups of women aged 18–35 years, who had two or more episodes of binge drinking (>6 UK units on one occasion; 48g of alcohol) in the previous 30 days, were recruited from the community. A face-to-face group intervention, based on the Health Action Process Approach, was delivered over three sessions. Components of the intervention were woven around fun activities, such as making alcohol free cocktails. Women were followed up four months after the intervention was delivered. Results The target of 24 groups (comprising 97 women) was recruited. The common pattern of drinking was infrequent, heavy drinking (mean consumption on the heaviest drinking day was UK 18.1 units). Process evaluation revealed that the intervention was delivered with high fidelity and acceptability of the study methods was high. The women engaged positively with intervention components and made group decisions about cutting down. Twenty two groups set goals to reduce their drinking, and these were translated into action plans. Retention of individuals at follow up was 87%.ConclusionsThis study successfully recruited groups of young women whose patterns of drinking place them at high risk of acute harm. This novel approach to delivering an alcohol intervention has potential to reduce binge drinking among young women. The high levels of engagement with key steps in the behavior change process suggests that the group intervention should be tested in a full randomised controlled trial
The evolution of photosynthesis in chromist algae through serial endosymbioses
Chromist algae include diverse photosynthetic organisms of great ecological and social importance. Despite vigorous research efforts, a clear understanding of how various chromists acquired photosynthetic organelles has been complicated by conflicting phylogenetic results, along with an undetermined number and pattern of endosymbioses, and the horizontal movement of genes that accompany them. We apply novel statistical approaches to assess impacts of endosymbiotic gene transfer on three principal chromist groups at the heart of long-standing controversies. Our results provide robust support for acquisitions of photosynthesis through serial endosymbioses, beginning with the adoption of a red alga by cryptophytes, then a cryptophyte by the ancestor of ochrophytes, and finally an ochrophyte by the ancestor of haptophytes. Resolution of how chromist algae are related through endosymbioses provides a framework for unravelling the further reticulate history of red algal-derived plastids, and for clarifying evolutionary processes that gave rise to eukaryotic photosynthetic diversity
- …
