1,731 research outputs found
Electromagnetic emission from axionic clouds and the quenching of superradiant instabilities
The nature of dark matter is one of the longest-standing puzzles in science.
Axions or axion-like particles are a key possibility, and arise in mechanisms
to solve the strong CP problem but also in low-energy limits of string theory.
Extensive experimental and observational efforts are actively looking for
`axionic' imprints. Independently on their nature, their abundance, and on
their contribution to the dark matter problem, axions form dense clouds around
spinning black holes, grown by superradiant mechanisms. It was recently
suggested that once couplings to photons are considered, an exponential
(quantum) stimulated emission of photons ensues at large enough axion number.
Here we solve numerically the classical problem in different setups. We show
that laser-like emission from clouds exists at the classical level, and we
provide the first quantitative description of the problem.Comment: 6 pages, RevTex4. v2: Overall improvement. Accepted for publication
in Physical Review Letter
Evidence regarding clinical use of microvolt T-wave alternans [Accuracy of microvolt T-wave alternans testing]
Background: Microvolt T-wave alternans (MTWA) testing in many studies has proven to be a highly accurate predictor of ventricular tachyarrhythmic events (VTEs) in patients with risk factors for sudden cardiac death (SCD) but without a prior history of sustained VTEs (primary prevention patients). In some recent studies involving primary prevention patients with prophylactically implanted cardioverter-defibrillators (ICDs), MTWA has not performed as well.
Objective: This study examined the hypothesis that MTWA is an accurate predictor of VTEs in primary prevention patients without implanted ICDs, but not of appropriate ICD therapy in such patients with implanted ICDs.
Methods: This study identified prospective clinical trials evaluating MTWA measured using the spectral analytic method in primary prevention populations and analyzed studies in which: (1) few patients had implanted ICDs and as a result none or a small fraction (≤15%) of the reported end point VTEs were appropriate ICD therapies (low ICD group), or (2) many of the patients had implanted ICDs and the majority of the reported end point VTEs were appropriate ICD therapies (high ICD group).
Results: In the low ICD group comprising 3,682 patients, the hazard ratio associated with a nonnegative versus negative MTWA test was 13.6 (95% confidence interval [CI] 8.5 to 30.4) and the annual event rate among the MTWA-negative patients was 0.3% (95% CI: 0.1% to 0.5%). In contrast, in the high ICD group comprising 2,234 patients, the hazard ratio was only 1.6 (95% CI: 1.2 to 2.1) and the annual event rate among the MTWA-negative patients was elevated to 5.4% (95% CI: 4.1% to 6.7%). In support of these findings, we analyzed published data from the Multicenter Automatic Defibrillator Trial II (MADIT II) and Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT) trials and determined that in those trials only 32% of patients who received appropriate ICD therapy averted an SCD.
Conclusion: This study found that MTWA testing using the spectral analytic method provides an accurate means of predicting VTEs in primary prevention patients without implanted ICDs; in particular, the event rate is very low among such patients with a negative MTWA test. In prospective trials of ICD therapy, the number of patients receiving appropriate ICD therapy greatly exceeds the number of patients who avert SCD as a result of ICD therapy. In trials involving patients with implanted ICDs, these excess appropriate ICD therapies seem to distribute randomly between MTWA-negative and MTWA-nonnegative patients, obscuring the predictive accuracy of MTWA for SCD. Appropriate ICD therapy is an unreliable surrogate end point for SCD
Estimating the potential impact of canine distemper virus on the Amur tiger population (Panthera tigris altaica) in Russia
Lethal infections with canine distemper virus (CDV) have recently been diagnosed in Amur tigers (Panthera tigris altaica), but long-term implications for the population are unknown. This study evaluates the potential impact of CDV on a key tiger population in Sikhote-Alin Biosphere Zapovednik (SABZ), and assesses how CDV might influence the extinction potential of other tiger populations of varying sizes. An individual-based stochastic, SIRD (susceptible-infected-recovered/dead) model was used to simulate infection through predation of infected domestic dogs, and/or wild carnivores, and direct tiger-to-tiger transmission. CDV prevalence and effective contact based on published and observed data was used to define plausible low- and high-risk infection scenarios. CDV infection increased the 50-year extinction probability of tigers in SABZ by 6.3% to 55.8% compared to a control population, depending on risk scenario. The most significant factors influencing model outcome were virus prevalence in the reservoir population(s) and its effective contact rate with tigers. Adjustment of the mortality rate had a proportional impact, while inclusion of epizootic infection waves had negligible additional impact. Small populations were found to be disproportionately vulnerable to extinction through CDV infection. The 50-year extinction risk in populations consisting of 25 individuals was 1.65 times greater when CDV was present than that of control populations. The effects of density dependence do not protect an endangered population from the impacts of a multi-host pathogen, such as CDV, where they coexist with an abundant reservoir presenting a persistent threat. Awareness of CDV is a critical component of a successful tiger conservation management policy
Two-Fermi-surface superconducting state and a nodal d-wave gap in the electron-doped Sm(1.85)Ce(0.15)CuO(4-d) cuprate superconductor
We report on laser-excited angle-resolved photoemission spectroscopy (ARPES)
in the electron-doped cuprate Sm(1.85)Ce(0.15)CuO(4-d). The data show the
existence of a nodal hole-pocket Fermi-surface both in the normal and
superconducting states. We prove that its origin is long-range
antiferromagnetism by an analysis of the coherence factors in the main and
folded bands. This coexistence of long-range antiferromagnetism and
superconductivity implies that electron-doped cuprates are two-Fermi-surface
superconductors. The measured superconducting gap in the nodal hole-pocket is
compatible with a d-wave symmetry.Comment: 4 pages, 3 figures, accepted to Phys. Rev. Let
Growth of quantum three-dimensional structure of InGaAs emitting at ~1 µm applicable for a broadband near-infrared light source
We obtained a high-intensity and broadband emission centered at ~1 µm from InGaAs quantum three-dimensional (3D) structures grown on a GaAs substrate using molecular beam epitaxy. An InGaAs thin layer grown on GaAs with a thickness close to the critical layer thickness is normally affected by strain as a result of the lattice mismatch and introduced misfit dislocations. However, under certain growth conditions for the In concentration and growth temperature, the growth mode of the InGaAs layer can be transformed from two-dimensional to 3D growth. We found the optimal conditions to obtain a broadband emission from 3D structures with a high intensity and controlled center wavelength at ~1 µm. This method offers an alternative approach for fabricating a broadband near-infrared light source for telecommunication and medical imaging systems such as for optical coherence tomography
Radiation Driven Implosion and Triggered Star Formation
We present simulations of initially stable isothermal clouds exposed to
ionizing radiation from a discrete external source, and identify the conditions
that lead to radiatively driven implosion and star formation. We use the
Smoothed Particle Hydrodynamics code SEREN (Hubber et al. 2010) and the
HEALPix-based photoionization algorithm described in Bisbas et al. (2009). We
find that the incident ionizing flux is the critical parameter determining the
evolution: high fluxes simply disperse the cloud, whereas low fluxes trigger
star formation. We find a clear connection between the intensity of the
incident flux and the parameters of star formation.Comment: 4 pages, 2 figures, conference proceedings, IAU Symposium 270 (eds.
Alves, Elmegreen, Girart, Trimble
Evidence regarding clinical use of microvolt T-wave alternans
Background:
Microvolt T-wave alternans (MTWA) testing in many studies has proven to be a highly accurate predictor of ventricular tachyarrhythmic events (VTEs) in patients with risk factors for sudden cardiac death (SCD) but without a prior history of sustained VTEs (primary prevention patients). In some recent studies involving primary prevention patients with prophylactically implanted cardioverter-defibrillators (ICDs), MTWA has not performed as well.
Objective:
This study examined the hypothesis that MTWA is an accurate predictor of VTEs in primary prevention patients without implanted ICDs, but not of appropriate ICD therapy in such patients with implanted ICDs.
Methods:
This study identified prospective clinical trials evaluating MTWA measured using the spectral analytic method in primary prevention populations and analyzed studies in which: (1) few patients had implanted ICDs and as a result none or a small fraction (≤15%) of the reported end point VTEs were appropriate ICD therapies (low ICD group), or (2) many of the patients had implanted ICDs and the majority of the reported end point VTEs were appropriate ICD therapies (high ICD group).
Results:
In the low ICD group comprising 3,682 patients, the hazard ratio associated with a nonnegative versus negative MTWA test was 13.6 (95% confidence interval [CI] 8.5 to 30.4) and the annual event rate among the MTWA-negative patients was 0.3% (95% CI: 0.1% to 0.5%). In contrast, in the high ICD group comprising 2,234 patients, the hazard ratio was only 1.6 (95% CI: 1.2 to 2.1) and the annual event rate among the MTWA-negative patients was elevated to 5.4% (95% CI: 4.1% to 6.7%). In support of these findings, we analyzed published data from the Multicenter Automatic Defibrillator Trial II (MADIT II) and Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT) trials and determined that in those trials only 32% of patients who received appropriate ICD therapy averted an SCD.
Conclusion:
This study found that MTWA testing using the spectral analytic method provides an accurate means of predicting VTEs in primary prevention patients without implanted ICDs; in particular, the event rate is very low among such patients with a negative MTWA test. In prospective trials of ICD therapy, the number of patients receiving appropriate ICD therapy greatly exceeds the number of patients who avert SCD as a result of ICD therapy. In trials involving patients with implanted ICDs, these excess appropriate ICD therapies seem to distribute randomly between MTWA-negative and MTWA-nonnegative patients, obscuring the predictive accuracy of MTWA for SCD. Appropriate ICD therapy is an unreliable surrogate end point for SCD
Detection of CI in absorption towards PKS 1830-211 with the eSMA
We report the first science observations and results obtained with the
"extended" SMA (eSMA), which is composed of the SMA (Submillimeter Array), JCMT
(James Clerk Maxwell Telescope) and CSO (Caltech Submillimeter Observatory).
Redshifted absorptions at z=0.886 of CI (^3P_1 - ^3P_0) were observed with the
eSMA with an angular resolution of 0.55"x0.22" at 1.1 mm toward the
southwestern image of the remarkable lensed quasar PKS 1830-211, but not toward
the northeastern component at a separation of ~1". Additionally, SMA
observations of CO, 13CO and C18O (all J=4-3) were obtained toward this object:
CO was also detected toward the SW component, but none of the isotopologues
were. This is the first time [CI] is detected in this object, allowing the
first direct determination of relative abundances of neutral atomic carbon to
CO in the molecular clouds of a spiral galaxy at z>0.1. The [CI] and CO
profiles can be decomposed into two and three velocity components respectively.
We derive C/CO column density ratios ranging from <0.5 (representative of dense
cores) to ~2.5 (close to translucent clouds values). This could indicate that
we are seeing environments with different physical conditions or that we are
witnessing chemical evolution of regions where C has not completely been
converted into CO.Comment: 6 pages using emulateapj, 3 tables, 2 figures ; accepted for
publication in ApJ
Membrane Sigma-Models and Quantization of Non-Geometric Flux Backgrounds
We develop quantization techniques for describing the nonassociative geometry
probed by closed strings in flat non-geometric R-flux backgrounds M. Starting
from a suitable Courant sigma-model on an open membrane with target space M,
regarded as a topological sector of closed string dynamics in R-space, we
derive a twisted Poisson sigma-model on the boundary of the membrane whose
target space is the cotangent bundle T^*M and whose quasi-Poisson structure
coincides with those previously proposed. We argue that from the membrane
perspective the path integral over multivalued closed string fields in Q-space
is equivalent to integrating over open strings in R-space. The corresponding
boundary correlation functions reproduce Kontsevich's deformation quantization
formula for the twisted Poisson manifolds. For constant R-flux, we derive
closed formulas for the corresponding nonassociative star product and its
associator, and compare them with previous proposals for a 3-product of fields
on R-space. We develop various versions of the Seiberg-Witten map which relate
our nonassociative star products to associative ones and add fluctuations to
the R-flux background. We show that the Kontsevich formula coincides with the
star product obtained by quantizing the dual of a Lie 2-algebra via convolution
in an integrating Lie 2-group associated to the T-dual doubled geometry, and
hence clarify the relation to the twisted convolution products for topological
nonassociative torus bundles. We further demonstrate how our approach leads to
a consistent quantization of Nambu-Poisson 3-brackets.Comment: 52 pages; v2: references adde
On the multi-orbital band structure and itinerant magnetism of iron-based superconductors
This paper explains the multi-orbital band structures and itinerant magnetism
of the iron-pnictide and chalcogenides. We first describe the generic band
structure of an isolated FeAs layer. Use of its Abelian glide-mirror group
allows us to reduce the primitive cell to one FeAs unit. From
density-functional theory, we generate the set of eight Fe and As
localized Wannier functions for LaOFeAs and their tight-binding (TB)
Hamiltonian, . We discuss the topology of the bands, i.e. allowed and
avoided crossings, the origin of the d6 pseudogap, as well as the role of the
As orbitals and the elongation of the FeAs tetrahedron. We then
couple the layers, mainly via interlayer hopping between As orbitals,
and give the formalism for simple and body-centered tetragonal stackings. This
allows us to explain the material-specific 3D band structures. Due to the high
symmetry, several level inversions take place as functions of or
pressure, resulting in linear band dispersions (Dirac cones). The underlying
symmetry elements are, however, easily broken, so that the Dirac points are not
protected, nor pinned to the Fermi level. From the paramagnetic TB Hamiltonian,
we form the band structures for spin spirals with wavevector by coupling
and . The band structure for stripe order is studied as a
function of the exchange potential, , using Stoner theory. Gapping of
the Fermi surface (FS) for small requires matching of FS dimensions
(nesting) and -orbital characters. The origin of the propeller-shaped FS is
explained. Finally, we express the magnetic energy as the sum over
band-structure energies, which enables us to understand to what extent the
magnetic energies might be described by a Heisenberg Hamiltonian, and the
interplay between the magnetic moment and the elongation of the FeAs4
tetrahedron
- …
