3,453 research outputs found
lntrogression and Its Consequences in Plants
The role of introgression in plant evolution has been the subject of considerable discussion since the publication of Anderson\u27s influential monograph, Introgressive Hybridization (Anderson, 1949). Anderson promoted the view, since widely held by botanists, that interspecific transfer of genes is a potent evolutionary force. He suggested that the raw material for evolution brought about by introgression must greatly exceed the new genes produced directly by mutation ( 1949, p. 102) and reasoned, as have many subsequent authors, that the resulting increases in genetic diversity and number of genetic combinations promote the development or acquisition of novel adaptations (Anderson, 1949, 1953; Stebbins, 1959; Rattenbury, 1962; Lewontin and Birch, 1966; Raven, 1976; Grant, 1981 ). In contrast to this adaptationist perspective, others have accorded little evolutionary significance to introgression, suggesting instead that it should be considered a primarily local phenomenon with only transient effects, a kind of evolutionary noise (Barber and Jackson, 1957; Randolph et al., 1967; Wagner, 1969, 1970; Hardin, 1975). One of the vociferous doubters of a significant role of hybridization in plant evolution was Wagner ( 1969, p. 785), who commented that the ultimate contributions made by hybrids must be very small or negligible. Wagner\u27s frequently expressed opinion appears to be based on ecological and compatibility arguments, which were encapsulated as follows: In the rare cases that two well differentiated species happen to be interfertile enough to produce fertile progeny, their hybrids will usually have to fit into some hybrid niche. Such fertile hybrids will therefore tend to be transient, disappearing once the differentiated community returns and the parental species re-occupy their normal habitats
A target enrichment method for gathering phylogenetic information from hundreds of loci: An example from the Compositae.
UnlabelledPremise of the studyThe Compositae (Asteraceae) are a large and diverse family of plants, and the most comprehensive phylogeny to date is a meta-tree based on 10 chloroplast loci that has several major unresolved nodes. We describe the development of an approach that enables the rapid sequencing of large numbers of orthologous nuclear loci to facilitate efficient phylogenomic analyses. •Methods and resultsWe designed a set of sequence capture probes that target conserved orthologous sequences in the Compositae. We also developed a bioinformatic and phylogenetic workflow for processing and analyzing the resulting data. Application of our approach to 15 species from across the Compositae resulted in the production of phylogenetically informative sequence data from 763 loci and the successful reconstruction of known phylogenetic relationships across the family. •ConclusionsThese methods should be of great use to members of the broader Compositae community, and the general approach should also be of use to researchers studying other families
Allele identification for transcriptome-based population genomics in the invasive plant Centaurea solstitialis
Transcriptome sequences are becoming more broadly available for multiple individuals of the same species, providing opportunities to derive population genomic information from these datasets. Using the 454 Life Science Genome Sequencer FLX and FLX-Titanium next-generation platforms, we generated 11−430 Mbp of sequence for normalized cDNA for 40 wild genotypes of the invasive plant Centaurea solstitialis, yellow starthistle, from across its worldwide distribution. We examined the impact of sequencing effort on transcriptome recovery and overlap among individuals. To do this, we developed two novel publicly available software pipelines: SnoWhite for read cleaning before assembly, and AllelePipe for clustering of loci and allele identification in assembled datasets with or without a reference genome. AllelePipe is designed specifically for cases in which read depth information is not appropriate or available to assist with disentangling closely related paralogs from allelic variation, as in transcriptome or previously assembled libraries. We find that modest applications of sequencing effort recover most of the novel sequences present in the transcriptome of this species, including single-copy loci and a representative distribution of functional groups. In contrast, the coverage of variable sites, observation of heterozygosity, and overlap among different libraries are all highly dependent on sequencing effort. Nevertheless, the information gained from overlapping regions was informative regarding coarse population structure and variation across our small number of population samples, providing the first genetic evidence in support of hypothesized invasion scenarios.Fil: Dlugosch, Katrina M.. University of British Columbia; CanadáFil: Lai, Zhao. Indiana University; Estados UnidosFil: Bonin, Auélie. Indiana University; Estados UnidosFil: Hierro, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Rieseberg, Loren H.. University of British Columbia; Canadá. Indiana University; Estados Unido
The complex hybrid origins of the root knot nematodes revealed through comparative genomics
Meloidogyne root knot nematodes (RKN) can infect most of the world's
agricultural crop species and are among the most important of all plant
pathogens. As yet however we have little understanding of their origins or the
genomic basis of their extreme polyphagy. The most damaging pathogens reproduce
by mitotic parthenogenesis and are suggested to originate by interspecific
hybridizations between unknown parental taxa. We sequenced the genome of the
diploid meiotic parthenogen Meloidogyne floridensis, and use a comparative
genomic approach to test the hypothesis that it was involved in the hybrid
origin of the tropical mitotic parthenogen M. incognita. Phylogenomic analysis
of gene families from M. floridensis, M. incognita and an outgroup species M.
hapla was used to trace the evolutionary history of these species' genomes,
demonstrating that M. floridensis was one of the parental species in the hybrid
origins of M. incognita. Analysis of the M. floridensis genome revealed many
gene loci present in divergent copies, as they are in M. incognita, indicating
that it too had a hybrid origin. The triploid M. incognita is shown to be a
complex double-hybrid between M. floridensis and a third, unidentified parent.
The agriculturally important RKN have very complex origins involving the mixing
of several parental genomes by hybridization and their extreme polyphagy and
agricultural success may be related to this hybridization, producing
transgressive variation on which natural selection acts. Studying RKN variation
via individual marker loci may fail due to the species' convoluted origins, and
multi-species population genomics is essential to understand the hybrid
diversity and adaptive variation of this important species complex. This
comparative genomic analysis provides a compelling example of the importance
and complexity of hybridization in generating animal species diversity more
generally
Body shape differences in a pair of closely related Malawi cichlids and their hybrids: Effects of genetic variation, phenotypic plasticity, and transgressive segregation
Citation: Husemann, M., Tobler, M., McCauley, C., Ding, B., & Danley, P. D. (2017). Body shape differences in a pair of closely related Malawi cichlids and their hybrids: Effects of genetic variation, phenotypic plasticity, and transgressive segregation. Ecology and Evolution. doi:10.1002/ece3.2823Phenotypic differences may have genetic and plastic components. Here, we investigated the contributions of both for differences in body shape in two species of Lake Malawi cichlids using wild-caught specimens and a common garden experiment. We further hybridized the two species to investigate the mode of gene action influencing body shape differences and to examine the potential for transgressive segregation. We found that body shape differences between the two species observed in the field are maintained after more than 10 generations in a standardized environment. Nonetheless, both species experienced similar changes in the laboratory environment. Our hybrid cross experiment confirmed that substantial variation in body shape appears to be genetically determined. The data further suggest that the underlying mode of gene action is complex and cannot be explained by simple additive or additive-dominance models. Transgressive phenotypes were found in the hybrid generations, as hybrids occupied significantly more morphospace than both parentals combined. Further, the body shapes of transgressive individuals resemble the body shapes observed in other Lake Malawi rock-dwelling genera. Our findings indicate that body shape can respond to selection immediately, through plasticity, and over longer timescales through adaptation. In addition, our results suggest that hybridization may have played an important role in the diversification of Lake Malawi cichlids through creating new phenotypic variation. © 2017 Published by John Wiley & Sons Ltd
Patterns of domestication in the Ethiopian oil-seed crop noug (Guizotia abyssinica)
Noug (Guizotia abyssinica) is a semidomesticated oil-seed crop, which is primarily cultivated in Ethiopia. Unlike its closest crop relative, sunflower, noug has small seeds, small flowering heads, many branches, many flowering heads, and indeterminate flowering, and it shatters in the field. Here, we conducted common garden studies and microsatellite analyses of genetic variation to test whether high levels of crop–wild gene flow and/or unfavorable phenotypic correlations have hindered noug domestication. With the exception of one population, analyses of microsatellite variation failed to detect substantial recent admixture between noug and its wild progenitor. Likewise, only very weak correlations were found between seed mass and the number or size of flowering heads. Thus, noug's ‘atypical’ domestication syndrome does not seem to be a consequence of recent introgression or unfavorable phenotypic correlations. Nonetheless, our data do reveal evidence of local adaptation of noug cultivars to different precipitation regimes, as well as high levels of phenotypic plasticity, which may permit reasonable yields under diverse environmental conditions. Why noug has not been fully domesticated remains a mystery, but perhaps early farmers selected for resilience to episodic drought or untended environments rather than larger seeds. Domestication may also have been slowed by noug's outcrossing mating syste
Hybridization in parasites: consequences for adaptive evolution, pathogenesis and public health in a changing world
[No abstract available
Fuzzy species limits in Mediterranean gorgonians (Cnidaria, Octocorallia): inferences on speciation processes
The study of the interplay between speciation and hybridization is of primary importance in evolutionary biology. Octocorals are ecologically important species whose shallow phylogenetic relationships often remain to be studied. In the Mediterranean Sea, three congeneric octocorals can be observed in sympatry: Eunicella verrucosa, Eunicella cavolini and Eunicella singularis. They display morphological differences and E.singularis hosts photosynthetic Symbiodinium, contrary to the two other species. Two nuclear sequence markers were used to study speciation and gene flow between these species, through network analysis and Approximate Bayesian Computation (ABC). Shared sequences indicated the possibility of hybridization or incomplete lineage sorting. According to ABC, a scenario of gene flow through secondary contact was the best model to explain these results. At the intraspecific level, neither geographical nor ecological isolation corresponded to distinct genetic lineages in E.cavolini. These results are discussed in the light of the potential role of ecology and genetic incompatibilities in the persistence of species limits.French National Research Agency (ANR) program Adacni (ANR) [ANR-12-ADAP-0016]CNRSHubert Curien 'Tassili' program [12MDU853]CCMAR Strategic Plan from Fundacao para a Ciencia e a Tecnologia-FCT [PEst-C/MAR/LA0015/2011,FEDERinfo:eu-repo/semantics/publishedVersio
Impact Factor: outdated artefact or stepping-stone to journal certification?
A review of Garfield's journal impact factor and its specific implementation
as the Thomson Reuters Impact Factor reveals several weaknesses in this
commonly-used indicator of journal standing. Key limitations include the
mismatch between citing and cited documents, the deceptive display of three
decimals that belies the real precision, and the absence of confidence
intervals. These are minor issues that are easily amended and should be
corrected, but more substantive improvements are needed. There are indications
that the scientific community seeks and needs better certification of journal
procedures to improve the quality of published science. Comprehensive
certification of editorial and review procedures could help ensure adequate
procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table
- …
