597 research outputs found
Non-linear inflationary perturbations
We present a method by which cosmological perturbations can be quantitatively
studied in single and multi-field inflationary models beyond linear
perturbation theory. A non-linear generalization of the gauge-invariant
Sasaki-Mukhanov variables is used in a long-wavelength approximation. These
generalized variables remain invariant under time slicing changes on long
wavelengths. The equations they obey are relatively simple and can be
formulated for a number of time slicing choices. Initial conditions are set
after horizon crossing and the subsequent evolution is fully non-linear. We
briefly discuss how these methods can be implemented numerically in the study
of non-Gaussian signatures from specific inflationary models.Comment: 10 pages, replaced to match JCAP versio
Path Integral for Inflationary Perturbations
The quantum theory of cosmological perturbations in single field inflation is
formulated in terms of a path integral. Starting from a canonical formulation,
we show how the free propagators can be obtained from the well known
gauge-invariant quadratic action for scalar and tensor perturbations, and
determine the interactions to arbitrary order. This approach does not require
the explicit solution of the energy and momentum constraints, a novel feature
which simplifies the determination of the interaction vertices. The constraints
and the necessary imposition of gauge conditions is reflected in the appearance
of various commuting and anti-commuting auxiliary fields in the action. These
auxiliary fields are not propagating physical degrees of freedom but need to be
included in internal lines and loops in a diagrammatic expansion. To illustrate
the formalism we discuss the tree-level 3-point and 4-point functions of the
inflaton perturbations, reproducing the results already obtained by the methods
used in the current literature. Loop calculations are left for future work.Comment: (v1) 28 pages, no figures; (v2) 29 pages, minor changes, matches
published versio
Non-Gaussian perturbations from multi-field inflation
We show how the primordial bispectrum of density perturbations from inflation
may be characterised in terms of manifestly gauge-invariant cosmological
perturbations at second order. The primordial metric perturbation, zeta,
describing the perturbed expansion of uniform-density hypersurfaces on large
scales is related to scalar field perturbations on unperturbed (spatially-flat)
hypersurfaces at first- and second-order. The bispectrum of the metric
perturbation is thus composed of (i) a local contribution due to the
second-order gauge-transformation, and (ii) the instrinsic bispectrum of the
field perturbations on spatially flat hypersurfaces. We generalise previous
results to allow for scale-dependence of the scalar field power spectra and
correlations that can develop between fields on super-Hubble scales.Comment: 11 pages, RevTex; minor changes to text; conclusions unchanged;
version to appear in JCA
Cosmic Acceleration Driven by Mirage Inhomogeneities
A cosmological model based on an inhomogeneous D3-brane moving in an AdS_5 X
S_5 bulk is introduced. Although there is no special points in the bulk, the
brane Universe has a center and is isotropic around it. The model has an
accelerating expansion and its effective cosmological constant is inversely
proportional to the distance from the center, giving a possible geometrical
origin for the smallness of a present-day cosmological constant. Besides, if
our model is considered as an alternative of early time acceleration, it is
shown that the early stage accelerating phase ends in a dust dominated FRW
homogeneous Universe. Mirage-driven acceleration thus provides a dark matter
component for the brane Universe final state. We finally show that the model
fulfills the current constraints on inhomogeneities.Comment: 14 pages, 1 figure, IOP style. v2, changed style, minor corrections,
references added, version accepted in Class. Quant. Gra
Multiple field inflation
Inflation offers a simple model for very early evolution of our Universe and
the origin of primordial perturbations on large scales. Over the last 25 years
we have become familiar with the predictions of single-field models, but
inflation with more than one light scalar field can alter preconceptions about
the inflationary dynamics and our predictions for the primordial perturbations.
I will discuss how future observational data could distinguish between
inflation driven by one field, or many fields. As an example, I briefly review
the curvaton as an alternative to the inflaton scenario for the origin of
structure.Comment: 27 pages, no figures. To appear in proceedings of 22nd IAP
Colloquium, Inflation +25, Paris, June 200
Classical approximation to quantum cosmological correlations
We investigate up to which order quantum effects can be neglected in
calculating cosmological correlation functions after horizon exit. As a toy
model, we study theory on a de Sitter background for a massless
minimally coupled scalar field . We find that for tree level and one loop
contributions in the quantum theory, a good classical approximation can be
constructed, but for higher loop corrections this is in general not expected to
be possible. The reason is that loop corrections get non-negligible
contributions from loop momenta with magnitude up to the Hubble scale H, at
which scale classical physics is not expected to be a good approximation to the
quantum theory. An explicit calculation of the one loop correction to the two
point function, supports the argument that contributions from loop momenta of
scale are not negligible. Generalization of the arguments for the toy model
to derivative interactions and the curvature perturbation leads to the
conclusion that the leading orders of non-Gaussian effects generated after
horizon exit, can be approximated quite well by classical methods. Furthermore
we compare with a theorem by Weinberg. We find that growing loop corrections
after horizon exit are not excluded, even in single field inflation.Comment: 44 pages, 1 figure; v2: corrected errors, added references,
conclusions unchanged; v3: added section in which we compare with stochastic
approach; this version matches published versio
On the divergences of inflationary superhorizon perturbations
We discuss the infrared divergences that appear to plague cosmological
perturbation theory. We show that within the stochastic framework they are
regulated by eternal inflation so that the theory predicts finite fluctuations.
Using the formalism to one loop, we demonstrate that the infrared
modes can be absorbed into additive constants and the coefficients of the
diagrammatic expansion for the connected parts of two and three-point functions
of the curvature perturbation. As a result, the use of any infrared cutoff
below the scale of eternal inflation is permitted, provided that the background
fields are appropriately redefined. The natural choice for the infrared cutoff
would of course be the present horizon; other choices manifest themselves in
the running of the correlators. We also demonstrate that it is possible to
define observables that are renormalization group invariant. As an example, we
derive a non-perturbative, infrared finite and renormalization point
independent relation between the two-point correlators of the curvature
perturbation for the case of the free single field.Comment: 12 page
The inflationary trispectrum
We calculate the trispectrum of the primordial curvature perturbation
generated by an epoch of slow-roll inflation in the early universe, and
demonstrate that the non-gaussian signature imprinted at horizon crossing is
unobservably small, of order tau_NL < r/50, where r < 1 is the tensor-to-scalar
ratio. Therefore any primordial non-gaussianity observed in future microwave
background experiments is likely to have been synthesized by gravitational
effects on superhorizon scales. We discuss the application of Maldacena's
consistency condition to the trispectrum.Comment: 23 pages, 2 diagrams drawn with feynmp.sty, uses iopart.cls. v2,
replaced with version accepted by JCAP. Estimate of maximal tau_NL refined in
Section 5, resulting in smaller numerical value. Sign errors in Eq. (44) and
Eq. (48) corrected. Some minor notational change
Non-Gaussianity in braneworld and tachyon inflation
We calculate the bispectrum of single-field braneworld inflation, triggered
by either an ordinary scalar field or a cosmological tachyon, by means of a
gradient expansion of large-scale non-linear perturbations coupled to
stochastic dynamics. The resulting effect is identical to that for single-field
4D standard inflation, the non-linearity parameter being proportional to the
scalar spectral index in the limit of collapsing momentum. If the slow-roll
approximation is assumed, braneworld and tachyon non-Gaussianities are
subdominant with respect to the post-inflationary contribution. However, bulk
physics may considerably strengthen the non-linear signatures. These features
do not change significantly when considered in a non-commutative framework.Comment: 17 pages; v2: added references and previously skipped details in the
derivation of the result; v3: improved discussio
Nonlinear superhorizon perturbations of non-canonical scalar field
We develop a theory of non-linear cosmological perturbations at superhorizon
scales for a scalar field with a Lagrangian of the form , where
and is the scalar field. We
employ the ADM formalism and the spatial gradient expansion approach to obtain
general solutions valid up to the second order in the gradient expansion. This
formulation can be applied to, for example, DBI inflation models to investigate
superhorizon evolution of non-Gaussianities. With slight modification, we also
obtain general solutions valid up to the same order for a perfect fluid with a
general equation of state .Comment: 14 page
- …
