331 research outputs found

    Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient

    Get PDF
    Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water‐limited sites

    Genomics meets HIV-1

    Get PDF
    Genomics is now a core element in the effort to develop a vaccine against HIV-1. Thanks to unprecedented progress in high-throughput genotyping and sequencing, in knowledge about genetic variation in humans, and in evolutionary genomics, it is finally possible to systematically search the genome for common genetic variants that influence the human response to HIV-1. The identification of such variants would help to determine which aspects of the response to the virus are the most promising targets for intervention. However, a key obstacle to progress remains the scarcity of appropriate human cohorts available for genomic research

    Predicting species dominance shifts across elevation gradients in mountain forests in Greece under a warmer and drier climate

    Get PDF
    The Mediterranean Basin is expected to face warmer and drier conditions in the future, following projected increases in temperature and declines in precipitation. The aim of this study is to explore how forests dominated by Abies borisii-regis, Abies cephalonica, Fagus sylvatica, Pinus nigra and Quercus frainetto will respond under such conditions. We combined an individual-based model (GREFOS), with a novel tree ring data set in order to constrain tree diameter growth and to account for inter- and intraspecific growth variability. We used wood density data to infer tree longevity, taking into account inter- and intraspecific variability. The model was applied at three 500-m-wide elevation gradients at Taygetos in Peloponnese, at Agrafa on Southern Pindos and at Valia Kalda on Northern Pindos in Greece. Simulations adequately represented species distribution and abundance across the elevation gradients under current climate. We subsequently used the model to estimate species and functional trait shifts under warmer and drier future conditions based on the IPCC A1B scenario. In all three sites, a retreat of less drought-tolerant species and an upward shift of more drought-tolerant species were simulated. These shifts were also associated with changes in two key functional traits, in particular maximum radial growth rate and wood density. Drought-tolerant species presented an increase in their average maximal growth and decrease in their average wood density, in contrast to less drought-tolerant species

    Psychiatric Disorder Criteria and their Application to Research in Different Racial Groups

    Get PDF
    BACKGROUND: The advent of standardized classification and assessment of psychiatric disorders, and considerable joint efforts among many countries has led to the reporting of international rates of psychiatric disorders, and inevitably, their comparison between different racial groups. RESULTS: In neurologic diseases with defined genetic etiologies, the same genetic cause has different phenotypes in different racial groups. CONCLUSION: We suggest that genetic differences between races mean that diagnostic criteria refined in one racial group, may not be directly and simply applicable to other racial groups and thus more effort needs to be expended on defining diseases in other groups. Cross-racial confounds (in addition to cultural confounds) make the interpretation of rates in different groups even more hazardous than seems to have been appreciated

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    Prevalence of the most frequent BRCA1 mutations in Polish population

    Get PDF
    The purpose of our study was to establish the frequency and distribution of the four most common BRCA1 mutations in Polish general population and in a series of breast cancer patients. Analysis of the population frequency of 5382insC (c.5266dupC), 300T >G (p.181T >G), 185delAG (c.68_69delAG) and 3819del5 (c.3700_3704del5) mutations of the BRCA1 gene were performed on a group of respectively 16,849, 13,462, 12,485 and 3923 anonymous samples collected at birth in seven Polish provinces. The patient group consisted of 1845 consecutive female breast cancer cases. The most frequent BRCA1 mutation in the general population was 5382insC found in 29 out of 16,849 samples (0.17%). 300T >G and 3819del5 mutations were found in respectively 11 of 13,462 (0.08%) and four of 3923 (0.1%) samples. The population prevalence for combined Polish founder 5382insC and 300T >G mutations was 0.25% (1/400). The frequencies of 5382insC and 300T >G carriers among consecutive breast cancer cases were, respectively, 1.9% (35/1845) and 1.2% (18/1486). Comparing these data with the population frequency, we calculated the relative risk of breast cancer for 5382insC mutation at OR = 17 and for 300T >G mutation at OR = 26. Our results, based on large population studies, show high frequencies of founder 5382insC and 300T >G BRCA1 mutations in Polish general population. Carriage of one of these mutations is connected with a very high relative risk of breast cancer

    Selecting a BRCA risk assessment model for use in a familial cancer clinic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Risk models are used to calculate the likelihood of carrying a <it>BRCA1 </it>or <it>BRCA2 </it>mutation. We evaluated the performances of currently-used risk models among patients from a large familial program using the criteria of high sensitivity, simple data collection and entry and <it>BRCA </it>score reporting.</p> <p>Methods</p> <p>Risk calculations were performed by applying the BRCAPRO, Manchester, Penn II, Myriad II, FHAT, IBIS and BOADICEA models to 200 non-<it>BRCA </it>carriers and 100 <it>BRCA </it>carriers, consecutively tested between August 1995 and March 2006. Areas under the receiver operating characteristic curves (AUCs) were determined and sensitivity and specificity were calculated at the conventional testing thresholds. In addition, subset analyses were performed for low and high risk probands.</p> <p>Results</p> <p>The BRCAPRO, Penn II, Myriad II, FHAT and BOADICEA models all have similar AUCs of approximately 0.75 for <it>BRCA </it>status. The Manchester and IBIS models have lower AUCs (0. and 0.47 respectively). At the conventional testing thresholds, the sensitivities and specificities for a <it>BRCA </it>mutation were, respectively, as follows: BRCAPRO (0.75, 0.62), Manchester (0.58,0.71), Penn II (0.93,0.31), Myriad II (0.71,0.63), FHAT (0.70,0.63), IBIS (0.20,0.74), BOADICEA (0.70, 0.65).</p> <p>Conclusion</p> <p>The Penn II model most closely met the criteria we established and this supports the use of this model for identifying individuals appropriate for genetic testing at our facility. These data are applicable to other familial clinics provided that variations in sample populations are taken into consideration.</p

    The NEI/NCBI dbGAP database: Genotypes and haplotypes that may specifically predispose to risk of neovascular age-related macular degeneration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To examine if the significantly associated SNPs derived from the genome wide allelic association study on the AREDS cohort at the NEI (dbGAP) specifically confer risk for neovascular age-related macular degeneration (AMD). We ascertained 134 unrelated patients with AMD who had one sibling with an AREDS classification 1 or less and was past the age at which the affected sibling was diagnosed (268 subjects). Genotyping was performed by both direct sequencing and Sequenom iPLEX system technology. Single SNP analyses were conducted with McNemar's Test (both 2 × 2 and 3 × 3 tests) and likelihood ratio tests (LRT). Conditional logistic regression was used to determine significant gene-gene interactions. LRT was used to determine the best fit for each genotypic model tested (additive, dominant or recessive).</p> <p>Results</p> <p>Before release of individual data, <it>p</it>-value information was obtained directly from the AREDS dbGAP website. Of the 35 variants with <it>P </it>< 10<sup>-6 </sup>examined, 23 significantly modified risk of neovascular AMD. Many variants located in tandem on 1q32-q22 including those in <it>CFH</it>, <it>CFHR4</it>, <it>CFHR2</it>, <it>CFHR5</it>, <it>F13B</it>, <it>ASPM </it>and <it>ZBTB </it>were significantly associated with AMD risk. Of these variants, single SNP analysis revealed that <it>CFH </it>rs572515 was the most significantly associated with AMD risk (P < 10<sup>-6</sup>). Haplotype analysis supported our findings of single SNP association, demonstrating that the most significant haplotype, GATAGTTCTC, spanning <it>CFH</it>, <it>CFHR4</it>, and <it>CFHR2 </it>was associated with the greatest risk of developing neovascular AMD (<it>P </it>< 10<sup>-6</sup>). Other than variants on 1q32-q22, only two SNPs, rs9288410 (<it>MAP2</it>) on 2q34-q35 and rs2014307 (<it>PLEKHA1</it>/<it>HTRA1</it>) on 10q26 were significantly associated with AMD status (<it>P </it>= .03 and <it>P </it>< 10<sup>-6 </sup>respectively). After controlling for smoking history, gender and age, the most significant gene-gene interaction appears to be between rs10801575 (<it>CFH</it>) and rs2014307 (<it>PLEKHA1</it>/<it>HTRA1</it>) (<it>P </it>< 10<sup>-11</sup>). The best genotypic fit for rs10801575 and rs2014307 was an additive model based on LRT. After applying a Bonferonni correction, no other significant interactions were identified between any other SNPs.</p> <p>Conclusion</p> <p>This is the first replication study on the NEI dbGAP SNPs, demonstrating that alleles on 1q, 2q and 10q may predispose an individual to AMD.</p
    corecore