74 research outputs found

    Global proteomic analysis of plasma from mice infected with Plasmodium berghei ANKA using two dimensional gel electrophoresis and matrix assisted laser desorption ionization-time of flight mass spectrometry

    Get PDF
    Malaria-infection in mice results in a wide perturbation of the host serum proteome involving a range of proteins and functions. Of particular interest is the increased secretion of anti-inflammatory and anti apoptotic proteins

    Population growth of Mexican free-tailed bats (Tadarida brasiliensis mexicana) predates human agricultural activity

    Get PDF
    Background Human activities, such as agriculture, hunting, and habitat modification, exert a significant effect on native species. Although many species have suffered population declines, increased population fragmentation, or even extinction in connection with these human impacts, others seem to have benefitted from human modification of their habitat. Here we examine whether population growth in an insectivorous bat (Tadarida brasiliensis mexicana) can be attributed to the widespread expansion of agriculture in North America following European settlement. Colonies of T. b. mexicana are extremely large (~106 individuals) and, in the modern era, major agricultural insect pests form an important component of their food resource. It is thus hypothesized that the growth of these insectivorous bat populations was coupled to the expansion of agricultural land use in North America over the last few centuries. Results We sequenced one haploid and one autosomal locus to determine the rate and time of onset of population growth in T. b. mexicana. Using an approximate Maximum Likelihood method, we have determined that T. b. mexicana populations began to grow ~220 kya from a relatively small ancestral effective population size before reaching the large effective population size observed today. Conclusions Our analyses reject the hypothesis that T. b. mexicana populations grew in connection with the expansion of human agriculture in North America, and instead suggest that this growth commenced long before the arrival of humans. As T. brasiliensis is a subtropical species, we hypothesize that the observed signals of population growth may instead reflect range expansions of ancestral bat populations from southern glacial refugia during the tail end of the Pleistocene

    Pre-Clinical Evaluation of a Novel Nanoemulsion-Based Hepatitis B Mucosal Vaccine

    Get PDF
    Hepatitis B virus infection remains an important global health concern despite the availability of safe and effective prophylactic vaccines. Limitations to these vaccines include requirement for refrigeration and three immunizations thereby restricting use in the developing world. A new nasal hepatitis B vaccine composed of recombinant hepatitis B surface antigen (HBsAg) in a novel nanoemulsion (NE) adjuvant (HBsAg-NE) could be effective with fewer administrations.Physical characterization indicated that HBsAg-NE consists of uniform lipid droplets (349+/-17 nm) associated with HBsAg through electrostatic and hydrophobic interactions. Immunogenicity of HBsAg-NE vaccine was evaluated in mice, rats and guinea pigs. Animals immunized intranasally developed robust and sustained systemic IgG, mucosal IgA and strong antigen-specific cellular immune responses. Serum IgG reached > or = 10(6) titers and was comparable to intramuscular vaccination with alum-adjuvanted vaccine (HBsAg-Alu). Normalization showed that HBsAg-NE vaccination correlates with a protective immunity equivalent or greater than 1000 IU/ml. Th1 polarized immune response was indicated by IFN-gamma and TNF-alpha cytokine production and elevated levels of IgG(2) subclass of HBsAg-specific antibodies. The vaccine retains full immunogenicity for a year at 4 degrees C, 6 months at 25 degrees C and 6 weeks at 40 degrees C. Comprehensive pre-clinical toxicology evaluation demonstrated that HBsAg-NE vaccine is safe and well tolerated in multiple animal models.Our results suggest that needle-free nasal immunization with HBsAg-NE could be a safe and effective hepatitis B vaccine, or provide an alternative booster administration for the parenteral hepatitis B vaccines. This vaccine induces a Th1 associated cellular immunity and also may provide therapeutic benefit to patients with chronic hepatitis B infection who lack cellular immune responses to adequately control viral replication. Long-term stability of this vaccine formulation at elevated temperatures suggests a direct advantage in the field, since potential excursions from cold chain maintenance could be tolerated without a loss in therapeutic efficacy

    Electron microscopy as a critical tool in the determination of pore forming mechanisms in proteins.

    No full text
    Electron microscopy has consistently played an important role in the description of pore-forming protein systems. The discovery of pore-forming proteins has depended on visualization of the structural pores formed by their oligomeric protein complexes, and as electron microscopy has advanced technologically so has the degree of insight it has been able to give. This review considers a large number of published studies of pore-forming complexes in prepore and pore states determined using single-particle cryo-electron microscopy. Sample isolation and preparation, imaging and image analysis, structure determination and optimization of results are all discussed alongside challenges which pore-forming proteins particularly present. The review also considers the use made of cryo-electron tomography to study pores within their membrane environment and which will prove an increasingly important approach for the future

    Pore-forming toxins

    No full text
    Pore-forming toxins are widely distributed proteins which form lesions in biological membranes. In this review, bacterial pore-forming toxins are treated as a paradigm and discussed in terms of the structural principles on which they work. Then, a large family of bacterial toxins, the cholesterol-binding toxins, are analyzed in depth to provide an overview of the processes involved in pore formation. The ways in which the cholesterol-binding toxins (cholesterol-dependent cytolysins) interact with membranes and form pores, the structure of the monomeric soluble and oligomeric pore-forming states, and the effects of the toxin on membrane structure are discussed. By surveying the range of work which has been done on cholesterol-binding toxins, a working model is elaborated which reconciles two current, apparently diametrically opposed, models for their mechanism

    Repurposing a pore: highly conserved perforin-like proteins with alternative mechanisms.

    No full text
    Pore-forming proteins play critical roles in pathogenic attack and immunological defence. The membrane attack complex/perforin (MACPF) group of homologues represents, with cholesterol-dependent cytolysins, the largest family of such proteins. In this review, we begin by describing briefly the structure of MACPF proteins, outlining their common mechanism of pore formation. We subsequently discuss some examples of MACPF proteins likely implicated in pore formation or other membrane-remodelling processes. Finally, we focus on astrotactin and bone morphogenetic protein and retinoic acid-induced neural-specific proteins, highly conserved MACPF family members involved in developmental processes, which have not been well studied to date or observed to form a pore-and which data suggest may act by alternative mechanisms.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'

    Neutron scattering: good news for biotechnology

    No full text
    In its application to biological systems, neutron scattering is still an emerging technology with a great deal of potential. A consequence of the native interaction between neutrons and biological samples is that the hydrogen isotopes (1)H and (2)H are most significant in dynamical and structural studies, respectively
    corecore