34 research outputs found

    Diagnosis and management of drug-associated interstitial lung disease

    Get PDF
    Symptoms of drug-associated interstitial lung disease (ILD) are nonspecific and can be difficult to distinguish from a number of illnesses that commonly occur in patients with non-small-cell lung cancer (NSCLC) on therapy. Identification of drug involvement and differentiation from other illnesses is problematic, although radiological manifestations and clinical tests enable many of the alternative causes of symptoms in advanced NSCLC to be excluded. In lung cancer patients, high-resolution computed tomography (HRCT) is more sensitive than a chest radiograph in evaluating the severity and progression of parenchymal lung disease. Indeed, the use of HRCT imaging has led to the recognition of many distinct patterns of lung involvement and, along with clinical signs and symptoms, helps to predict both outcome and response to treatment. This manuscript outlines the radiology of drug-associated ILD and its differential diagnosis in NSCLC. An algorithm that uses clinical tests to exclude alternative diagnoses is also described

    Mycobacterium tuberculosis peptides presented by HLA-E molecules are targets for human CD8 T-cells with cytotoxic as well as regulatory activity

    Get PDF
    Tuberculosis (TB) is an escalating global health problem and improved vaccines against TB are urgently needed. HLA-E restricted responses may be of interest for vaccine development since HLA-E displays very limited polymorphism (only 2 coding variants exist), and is not down-regulated by HIV-infection. The peptides from Mycobacterium tuberculosis (Mtb) potentially presented by HLA-E molecules, however, are unknown. Here we describe human T-cell responses to Mtb-derived peptides containing predicted HLA-E binding motifs and binding-affinity for HLA-E. We observed CD8(+) T-cell proliferation to the majority of the 69 peptides tested in Mtb responsive adults as well as in BCG-vaccinated infants. CD8(+) T-cells were cytotoxic against target-cells transfected with HLA-E only in the presence of specific peptide. These T cells were also able to lyse M. bovis BCG infected, but not control monocytes, suggesting recognition of antigens during mycobacterial infection. In addition, peptide induced CD8(+) T-cells also displayed regulatory activity, since they inhibited T-cell proliferation. This regulatory activity was cell contact-dependent, and at least partly dependent on membrane-bound TGF-beta. Our results significantly increase our understanding of the human immune response to Mtb by identification of CD8(+) T-cell responses to novel HLA-E binding peptides of Mtb, which have cytotoxic as well as immunoregulatory activity

    Comparison of gene expression profiles predicting progression in breast cancer patients treated with tamoxifen

    No full text
    Background Molecular signatures that predict outcome in tamoxifen treated breast cancer patients have been identified. For the first time, we compared these response profiles in an independent cohort of (neo)adjuvant systemic treatment na < ve breast cancer patients treated with first-line tamoxifen for metastatic disease. Methods From a consecutive series of 246 estrogen receptor (ER) positive primary tumors, gene expression profiling was performed on available frozen tumors using 44K oligoarrays (n = 69). A 78-gene tamoxifen response profile (formerly consisting of 81 cDNA-clones), a 21-gene set (microarray-based Recurrence Score), as well as the HOXB13-IL17BR ratio (Two-Gene-Index, RT-PCR) were analyzed. Performance of signatures in relation to time to progression (TTP) was compared with standard immunohistochemical (IHC) markers: ER, progesterone receptor (PgR) and HER2. Results In univariate analyses, the 78-gene tamoxifen response profile, 21-gene set and HOXB13-IL17BR ratio were all significantly associated with TTP with hazard ratios of 2.2 (95% CI 1.3-3.7, P = 0.005), 2.3 (95% CI 1.3-4.0, P = 0.003) and 4.2 (95% CI 1.4-12.3, P = 0.009), respectively. The concordance among the three classifiers was relatively low, they classified only 45-61% of patients in the same category. In multivariate analyses, the association remained significant for the 78-gene profile and the 21-gene set after adjusting for ER and PgR. Conclusion The 78-gene tamoxifen response profile, the 21-gene set and the HOXB13-IL17BR ratio were all significantly associated with TTP in an independent patient series treated with tamoxifen. The addition of multigene assays to ER (IHC) improves the prediction of outcome in tamoxifen treated patients and deserves incorporation in future clinical studies

    First genomic study on Lake Tanganyika sprat Stolothrissa tanganicae : a lack of population structure calls for integrated management of this important fisheries target species

    Get PDF
    BackgroundClupeid fisheries in Lake Tanganyika (East Africa) provide food for millions of people in one of the world's poorest regions. Due to climate change and overfishing, the clupeid stocks of Lake Tanganyika are declining. We investigate the population structure of the Lake Tanganyika sprat Stolothrissa tanganicae, using for the first time a genomic approach on this species. This is an important step towards knowing if the species should be managed separately or as a single stock. Population structure is important for fisheries management, yet understudied for many African freshwater species. We hypothesize that distinct stocks of S. tanganicae could be present due to the large size of the lake (isolation by distance), limnological variation (adaptive evolution), or past separation of the lake (historical subdivision). On the other hand, high mobility of the species and lack of obvious migration barriers might have resulted in a homogenous population.ResultsWe performed a population genetic study on wild-caught S. tanganicae through a combination of mitochondrial genotyping (96 individuals) and RAD sequencing (83 individuals). Samples were collected at five locations along a north-south axis of Lake Tanganyika. The mtDNA data had low global FST and, visualised in a haplotype network, did not show phylogeographic structure. RAD sequencing yielded a panel of 3504 SNPs, with low genetic differentiation (F-ST=0.0054; 95% CI: 0.0046-0.0066). PCoA, fineRADstructure and global F-ST suggest a near-panmictic population. Two distinct groups are apparent in these analyses (F-ST=0.1338 95% CI: 0.1239,0.1445), which do not correspond to sampling locations. Autocorrelation analysis showed a slight increase in genetic difference with increasing distance. No outlier loci were detected in the RADseq data.ConclusionOur results show at most very weak geographical structuring of the stock and do not provide evidence for genetic adaptation to historical or environmental differences over a north-south axis. Based on these results, we advise to manage the stock as one population, integrating one management strategy over the four riparian countries. These results are a first comprehensive study on the population structure of these important fisheries target species, and can guide fisheries management.Peer reviewe

    Mississippi Delta subsidence primarily caused by compaction of Holocene strata

    No full text
    Coastal subsidence causes sea-level rise, shoreline erosion and wetland loss, which poses a threat to coastal populations. This is especially evident in the Mississippi Delta in the southern United States, which was devastated by Hurricane Katrina in 2005. The loss of protective wetlands is considered a critical factor in the extensive flood damage. The causes of subsidence in coastal Louisiana, attributed to factors as diverse as shallow compaction and deep crustal processes, remain controversial. Current estimates of subsidence rates vary by several orders of magnitude. Here, we use a series of radiocarbon-dated sediment cores from the Mississippi Delta to analyse late Holocene deposits and assess compaction rates. We find that millennial-scale compaction rates primarily associated with peat can reach 5mm per year, values that exceed recent model predictions. Locally and on timescales of decades to centuries, rates are likely to be 10 mm or more per year. We conclude that compaction of Holocene strata contributes significantly to the exceptionally high rates of relative sea-level rise and coastal wetland loss in the Mississippi Delta, and is likely to cause subsidence in other organic-rich and often densely populated coastal plains
    corecore