4 research outputs found

    ApoB100/LDLR-/- Hypercholesterolaemic Mice as a Model for Mild Cognitive Impairment and Neuronal Damage

    Get PDF
    Recent clinical findings support the notion that the progressive deterioration of cholesterol homeostasis is a central player in Alzheimer's disease (AD). Epidemiological studies suggest that high midlife plasma total cholesterol levels are associated with an increased risk of AD. This paper reports the plasma cholesterol concentrations, cognitive performance, locomotor activity and neuropathological signs in a murine model (transgenic mice expressing apoB100 but knockout for the LDL receptor [LDLR]) of human familial hypercholesterolaemia (FH). From birth, these animals have markedly elevated LDL-cholesterol and apolipoprotein B100 (apoB100) levels. These transgenic mice were confirmed to have higher plasma cholesterol concentrations than wild-type mice, an effect potentiated by aging. Further, 3-month-old transgenic mice showed cholesterol (total and fractions) concentrations considerably higher than those of 18-month-old wild-type mice. The hypercholesterolaemia of the transgenic mice was associated with a clear locomotor deficit (as determined by rotarod, grip strength and open field testing) and impairment of the episodic-like memory (determined by the integrated memory test). This decline in locomotor activity and cognitive status was associated with neuritic dystrophy and/or the disorganization of the neuronal microtubule network, plus an increase in astrogliosis and lipid peroxidation in the brain regions associated with AD, such as the motor and lateral entorhinal cortex, the amygdaloid basal nucleus, and the hippocampus. Aortic atherosclerotic lesions were positively correlated with age, although potentiated by the transgenic genotype, while cerebral β-amyloidosis was positively correlated with genetic background rather than with age. These findings confirm hypercholesterolaemia as a key biomarker for monitoring mild cognitive impairment, and shows these transgenic mice can be used as a model for cognitive and psycho-motor decline

    LDLR Expression and Localization Are Altered in Mouse and Human Cell Culture Models of Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most common form of dementia. The major molecular risk factor for late-onset AD is expression of the ε-4 allele of apolipoprotein E (apoE), the major cholesterol transporter in the brain. The low-density lipoprotein receptor (LDLR) has the highest affinity for apoE and plays an important role in brain cholesterol metabolism.Using RT-PCR and western blotting techniques we found that over-expression of APP caused increases in both LDLR mRNA and protein levels in APP transfected H4 neuroglioma cells compared to H4 controls. Furthermore, immunohistochemical experiments showed aberrant localization of LDLR in H4-APP neuroglioma cells, Aβ-treated primary neurons, and in the PSAPP transgenic mouse model of AD. Finally, immunofluorescent staining of LDLR and of γ- and α-tubulin showed a change in LDLR localization preferentially away from the plasma membrane that was paralleled by and likely the result of a disruption of the microtubule-organizing center and associated microtubule network.These data suggest that increased APP expression and Aβ exposure alters microtubule function, leading to reduced transport of LDLR to the plasma membrane. Consequent deleterious effects on apoE uptake and function will have implications for AD pathogenesis and/or progression

    Associations of cerebrovascular metabolism genotypes with neuropsychiatric symptoms and age at onset of Alzheimer’s disease dementia

    No full text
    Objective: To study associations of cerebrovascular metabolism genotypes and haplotypes with age at Alzheimer's disease dementia (AD) onset and with neuropsychiatric symptoms according to each dementia stage. Methods: Consecutive outpatients with late-onset AD were assessed for age at dementia onset and Neuropsychiatric Inventory scores according to Clinical Dementia Rating scores, apolipoprotein E gene (APOE) haplotypes, angiotensin-converting enzyme gene (ACE) variants rs1800764 and rs4291, low-density lipoprotein cholesterol receptor gene (LDLR) variants rs1 1669576 and rs5930, cholesteryl ester transfer protein gene (CETP) variants I422V and TaqIB, and liver X receptor beta gene (NR1H2) polymorphism rs2695121. Results: Considering 201 patients, only APOE-epsilon 4 carriers had earlier dementia onset in multiple correlations, as well as less apathy, more delusions, and more aberrant motor behavior. Both ACE polymorphisms were associated with less intense frontally mediated behaviors. Regarding LDLR variants, carriers of the A allele of rs1 1669576 had less anxiety and more aberrant motor behavior, whereas carriers of the A allele of rs5930 had less delusions, less anxiety, more apathy, and more irritability. CETP variants that included G alleles of I422V and TaqIB were mostly associated with less intense frontally mediated behaviors, while severely impaired carriers of the T allele of rs2695121 had more anxiety and more aberrant motor behavior. Conclusion: Though only APOE haplotypes affected AD onset, cerebrovascular metabolism genotypes were associated with differences in several neuropsychiatric manifestations of AD.Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)CAPESFAPESPConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Univ Fed Sao Paulo UNIFESP, EPM, Dept Neurol & Neurocirurgia, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, EPM, Dept Morfol & Genet, Sao Paulo, SP, BrazilUniv Fed Sao Paulo UNIFESP, EPM, Dept Neurol & Neurocirurgia, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, EPM, Dept Morfol & Genet, Sao Paulo, SP, BrazilCAPES: 1067/10FAPESP: 2015/10109-5Web of Scienc
    corecore