85 research outputs found
Altruism can proliferate through group/kin selection despite high random gene flow
The ways in which natural selection can allow the proliferation of
cooperative behavior have long been seen as a central problem in evolutionary
biology. Most of the literature has focused on interactions between pairs of
individuals and on linear public goods games. This emphasis led to the
conclusion that even modest levels of migration would pose a serious problem to
the spread of altruism in group structured populations. Here we challenge this
conclusion, by analyzing evolution in a framework which allows for complex
group interactions and random migration among groups. We conclude that
contingent forms of strong altruism can spread when rare under realistic group
sizes and levels of migration. Our analysis combines group-centric and
gene-centric perspectives, allows for arbitrary strength of selection, and
leads to extensions of Hamilton's rule for the spread of altruistic alleles,
applicable under broad conditions.Comment: 5 pages, 2 figures. Supplementary material with 50 pages and 26
figure
Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses
The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined
Breakdown of the adiabatic limit in low dimensional gapless systems
It is generally believed that a generic system can be reversibly transformed
from one state into another by sufficiently slow change of parameters. A
standard argument favoring this assertion is based on a possibility to expand
the energy or the entropy of the system into the Taylor series in the ramp
speed. Here we show that this argumentation is only valid in high enough
dimensions and can break down in low-dimensional gapless systems. We identify
three generic regimes of a system response to a slow ramp: (A) mean-field, (B)
non-analytic, and (C) non-adiabatic. In the last regime the limits of the ramp
speed going to zero and the system size going to infinity do not commute and
the adiabatic process does not exist in the thermodynamic limit. We support our
results by numerical simulations. Our findings can be relevant to
condensed-matter, atomic physics, quantum computing, quantum optics, cosmology
and others.Comment: 11 pages, 5 figures, to appear in Nature Physics (originally
submitted version
A meta-analysis and critical review of prospective memory in autism spectrum disorder
Prospective memory (PM) is the ability to remember to carry out a planned intention at an appropriate moment in the future. Research on PM in ASD has produced mixed results. We aimed to establish the extent to which two types of PM (event-based/time-based) are impaired in ASD. In part 1, a meta-analysis of all existing studies indicates a large impairment of time-based, but only a small impairment of event-based, PM in ASD. In Part 2, a critical review concludes that time-based PM appears diminished in ASD, in line with the meta-analysis, but that caution should be taken when interpreting event-based PM findings, given potential methodological limitations of several studies. Clinical implications and directions for future research are discussed
The role of protected areas in the avoidance of anthropogenic conversion in a high pressure region : a matching method analysis in the core region of the brazilian cerrado
Global efforts to avoid anthropogenic conversion of natural habitat rely heavily on the establishment of protected areas. Studies that evaluate the effectiveness of these areas with a focus on preserving the natural habitat define effectiveness as a measure of the influence of protected areas on total avoided conversion. Changes in the estimated effectiveness are related to local and regional differences, evaluation methods, restriction categories that include the protected areas, and other characteristics. The overall objective of this study
was to evaluate the effectiveness of protected areas to prevent the advance of the conversion of natural areas in the core region of the Brazil’s Cerrado Biome, taking into account the influence of the restriction degree, governmental sphere, time since the establishment of the protected area units, and the size of the area on the performance of protected areas. The evaluation was conducted using matching methods and took into account the following two fundamental issues: control of statistical biases caused by the influence of covariates on the likelihood of anthropogenic conversion and the non-randomness of the allocation of protected areas throughout the territory (spatial correlation effect) and the control of statistical bias caused by the influence of auto-correlation and leakage effect. Using a sample design that is not based on ways to control these biases may result in outcomes that underestimate or overestimate the effectiveness of those units. The matching method accounted for a bias reduction in 94–99% of the estimation of the average effect of protected areas on anthropogenic conversion and allowed us to obtain results with a reduced influence of the auto-correlation and leakage effects. Most protected areas had a positive influence on the maintenance of natural habitats, although wide variation in this effectiveness was dependent on the type, restriction, governmental sphere, size and age group of the unit
Projected Range Contractions of European Protected Oceanic Montane Plant Communities: Focus on Climate Change Impacts Is Essential for Their Future Conservation
Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the northwest hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly greater focus on potential climate change impacts, including models with higher-resolution species distribution and environmental data, to aid these communities’ long-term survival
Therapeutic hypothermia translates from ancient history in to practice
Acute postasphyxial encephalopathy around the time of birth remains a major cause of death and disability. The possibility that hypothermia may be able to prevent or lessen asphyxial brain injury is a “dream revisited”. In this review, a historical perspective is provided from the first reported use of therapeutic hypothermia for brain injuries in antiquity, to the present day. The first uncontrolled trials of cooling for resuscitation were reported more than 50 y ago. The seminal insight that led to the modern revival of studies of neuroprotection was that after profound asphyxia, many brain cells show initial recovery from the insult during a short “latent” phase, typically lasting ~6 h, only to die hours to days later during a “secondary” deterioration phase characterized by seizures, cytotoxic edema, and progressive failure of cerebral oxidative metabolism. Studies designed around this conceptual framework showed that mild hypothermia initiated as early as possible before the onset of secondary deterioration, and continued for a sufficient duration to allow the secondary deterioration to resolve, is associated with potent, long-lasting neuroprotection. There is now compelling evidence from randomized controlled trials that mild induced hypothermia significantly improves intact survival and neurodevelopmental outcomes to midchildhood
Recommended from our members
Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the 21st century
During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can
have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science
Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to
better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies co-designed
with regional decision makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and
models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include: warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land-use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia's role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large scale water withdrawals, land use and governance change) and
potentially restrict or provide new opportunities for future human activities. Therefore, we propose that Integrated Assessment Models are needed as the final stage of global
change assessment. The overarching goal of this NEFI modeling effort will enable evaluation of economic decisions in response to changing environmental conditions and justification of mitigation and adaptation efforts
PPARδ Activation Acts Cooperatively with 3-Phosphoinositide-Dependent Protein Kinase-1 to Enhance Mammary Tumorigenesis
Peroxisome proliferator-activated receptorδ (PPARδ) is a transcription factor that is associated with metabolic gene regulation and inflammation. It has been implicated in tumor promotion and in the regulation of 3-phosphoinositide-dependent kinase-1 (PDK1). PDK1 is a key regulator of the AGC protein kinase family, which includes the proto-oncogene AKT/PKB implicated in several malignancies, including breast cancer. To assess the role of PDK1 in mammary tumorigenesis and its interaction with PPARδ, transgenic mice were generated in which PDK1 was expressed in mammary epithelium under the control of the MMTV enhancer/promoter region. Transgene expression increased pT308AKT and pS9GSK3β, but did not alter phosphorylation of mTOR, 4EBP1, ribosomal protein S6 and PKCα. The transgenic mammary gland also expressed higher levels of PPARδ and a gene expression profile resembling wild-type mice maintained on a diet containing the PPARδ agonist, GW501516. Both wild-type and transgenic mice treated with GW501516 exhibited accelerated rates of tumor formation that were more pronounced in transgenic animals. GW501516 treatment was accompanied by a distinct metabolic gene expression and metabolomic signature that was not present in untreated animals. GW501516-treated transgenic mice expressed higher levels of fatty acid and phospholipid metabolites than treated wild-type mice, suggesting the involvement of PDK1 in enhancing PPARδ-driven energy metabolism. These results reveal that PPARδ activation elicits a distinct metabolic and metabolomic profile in tumors that is in part related to PDK1 and AKT signaling
Geographic variation in social organization of Galápagos mockingbirds: ecological correlates of group territoriality and cooperative breeding
To investigate ecological influences on cooperative social organization, I studied the four allopatric species of mockingbirds ( Nesomimus spp.) endemic to the Galápagos archipelago on four islands. On three small, low and arid islands (Genovesa, Champion and Española), mockingbird territories filled all terrestrial habitat, mean group size varied from 4.5 to 14.2 adults, maximum group size ranged from seven to 24 birds, and 70–100% of groups contained more than two birds. San Cristóbal is larger and higher, and it supports a broader range of habitats. At one highland and two coastal sites on this island, mockingbirds did not hold territories in all available habitats, group size averaged 2.2 adults, only 25% of groups were larger than two, and none included more than three adults. Adults dispersed into vacant habitat to establish new territories only on San Cristóbal. Helping behavior has not yet been observed on San Cristóbal, but it occurs on the other three islands. These results support the hypothesis that social groups and cooperative breeding are maintained where limited availability of preferred habitat constrains dispersal. The mechanism relaxing habitat saturation on San Cristóbal, however, remains undetermined. Predation by introduced rats and cats may reduce survival and indirectly reduce group size; these predators are absent from Genovesa, Champion and Española. Differences in food supplies could also affect interand intra-island variation in population density. Variation in social organization among arid coastal sites on the four islands, and similarity between climatically different sites on San Cristóbal, suggest that climatic conditions are less important as determinants of dispersal and breeding. Skews in adult sex ratios also fail to account for inter-island variation in sociality. Although they live in a climatically variable environment, territorial behavior and the physical limits of suitable habitat have an overriding influence on cooperative social organization in Galápagos mockingbirds.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46894/1/265_2004_Article_BF00302932.pd
- …
