17 research outputs found

    Early Vegetation Development on an Exposed Reservoir: Implications for Dam Removal

    Get PDF
    The 4-year drawdown of Horsetooth Reservoir, Colorado, for dam maintenance, provides a case study analog of vegetation response on sediment that might be exposed from removal of a tall dam. Early vegetation recovery on the exposed reservoir bottom was a combination of (1) vegetation colonization on bare, moist substrates typical of riparian zones and reservoir sediment of shallow dams and (2) a shift in moisture status from mesic to the xeric conditions associated with the pre-impoundment upland position of most of the drawdown zone. Plant communities changed rapidly during the first four years of exposure, but were still substantially different from the background upland plant community. Predictions from the recruitment box model about the locations of Populus deltoides subsp. monilifera (plains cottonwood) seedlings relative to the water surface were qualitatively confirmed with respect to optimum locations. However, the extreme vertical range of water surface elevations produced cottonwood seed regeneration well outside the predicted limits of drawdown rate and height above late summer stage. The establishment and survival of cottonwood at high elevations and the differences between the upland plant community and the community that had developed after four years of exposure suggest that vegetation recovery following tall dam removal will follow a trajectory very different from a simple reversal of the response to dam construction, involving not only long time scales of establishment and growth of upland vegetation, but also possibly decades of persistence of legacy vegetation established during the reservoir to upland transition

    Analyzing the Impacts of Dams on Riparian Ecosystems: A Review of Research Strategies and Their Relevance to the Snake River Through Hells Canyon

    Get PDF
    River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies

    Deconstructing Insight: EEG Correlates of Insightful Problem Solving

    Get PDF
    Background: Cognitive insight phenomenon lies at the core of numerous discoveries. Behavioral research indicates four salient features of insightful problem solving: (i) mental impasse, followed by (ii) restructuring of the problem representation, which leads to (iii) a deeper understanding of the problem, and finally culminates in (iv) an “Aha!” feeling of suddenness and obviousness of the solution. However, until now no efforts have been made to investigate the neural mechanisms of these constituent features of insight in a unified framework. Methodology/Principal Findings: In an electroencephalographic study using verbal remote associate problems, we identified neural correlates of these four features of insightful problem solving. Hints were provided for unsolved problems or after mental impasse. Subjective ratings of the restructuring process and the feeling of suddenness were obtained on trial-by-trial basis. A negative correlation was found between these two ratings indicating that sudden insightful solutions, where restructuring is a key feature, involve automatic, subconscious recombination of information. Electroencephalogram signals were analyzed in the space×time×frequency domain with a nonparametric cluster randomization test. First, we found strong gamma band responses at parieto-occipital regions which we interpreted as (i) an adjustment of selective attention (leading to a mental impasse or to a correct solution depending on the gamma band power level) and (ii) encoding and retrieval processes for the emergence of spontaneous new solutions. Secondly, we observed an increased upper alpha band response in right temporal regions (suggesting active suppression of weakly activated solution relevant information) for initially unsuccessful trials that after hint presentation led to a correct solution. Finally, for trials with high restructuring, decreased alpha power (suggesting greater cortical excitation) was observed in right prefrontal area. Conclusions/Significance: Our results provide a first account of cognitive insight by dissociating its constituent components and potential neural correlates
    corecore