1,864 research outputs found
Inter-rater reliability of the Dysexecutive Questionnaire (DEX): comparative data from non-clinician respondents – all raters are not equal
Primary objective: The Dysexecutive Questionnaire (DEX) is used to obtain information about executive and emotional problems after neuropathology. The DEX is self-completed by the patient (DEX-S) and an independent rater such as a family member (DEX-I). This study examined the level of inter-rater agreement between either two or three non-clinician raters on the DEX-I in order to establish the reliability of DEX-I ratings.
Methods and procedures: Family members and/or carers of 60 people with mixed neuropathology completed the DEX-I. For each patient, DEX-I ratings were obtained from either two or three raters who knew the person well prior to brain injury.
Main outcomes and results: We obtained two independent-ratings for 60 patients and three independent-ratings for 36 patients. Intra-class correlations revealed that there was only a modest level of agreement for items, subscale and total DEX scores between raters for their particular family member. Several individual DEX items had low reliability and ratings for the emotion sub-scale had the lowest level of agreement.
Conclusions: Independent DEX ratings completed by two or more non-clinician raters show only moderate correlation. Suggestions are made for improving the reliability of DEX-I ratings.</p
Scallop swimming kinematics and muscle performance: modelling the effects of "within-animal" variation in temperature sensitivity
Escape behaviour was investigated in Queen scallops (Aequipecten opercularis) acclimated to 5, 10 or 15 degrees C and tested at their acclimation temperature. Scallops are active molluscs, able to escape from predators by jet-propelled swimming using a striated muscle working in opposition to an elastic hinge ligament. The first cycle of the escape response was recorded using high-speed video ( 250 Hz) and whole-animal velocity and acceleration determined. Muscle shortening velocity, force and power output were calculated using measurements of valve movement and jet area, and a simple biomechanical model. The average shortening speed of the adductor muscle had a Q(10) of 2.04, significantly reducing the duration of the jetting phase of the cycle with increased temperature. Muscle lengthening velocity and the overall duration of the clap cycle were changed little over the range 5 - 15 degrees C, as these parameters were controlled by the relatively temperature-insensitive, hinge ligament. Improvements in the average power output of the adductor muscle over the first clap cycle ( 222 vs. 139 W kg(-1) wet mass at 15 and 5 degrees C respectively) were not translated into proportional increases in overall swimming velocity, which was only 32% higher at 15 degrees C ( 0.37m s(-1)) than 5 degrees C (0.28 m s(-1))
Skin Lesion Analyser: An Efficient Seven-Way Multi-Class Skin Cancer Classification Using MobileNet
Skin cancer, a major form of cancer, is a critical public health problem with
123,000 newly diagnosed melanoma cases and between 2 and 3 million non-melanoma
cases worldwide each year. The leading cause of skin cancer is high exposure of
skin cells to UV radiation, which can damage the DNA inside skin cells leading
to uncontrolled growth of skin cells. Skin cancer is primarily diagnosed
visually employing clinical screening, a biopsy, dermoscopic analysis, and
histopathological examination. It has been demonstrated that the dermoscopic
analysis in the hands of inexperienced dermatologists may cause a reduction in
diagnostic accuracy. Early detection and screening of skin cancer have the
potential to reduce mortality and morbidity. Previous studies have shown Deep
Learning ability to perform better than human experts in several visual
recognition tasks. In this paper, we propose an efficient seven-way automated
multi-class skin cancer classification system having performance comparable
with expert dermatologists. We used a pretrained MobileNet model to train over
HAM10000 dataset using transfer learning. The model classifies skin lesion
image with a categorical accuracy of 83.1 percent, top2 accuracy of 91.36
percent and top3 accuracy of 95.34 percent. The weighted average of precision,
recall, and f1-score were found to be 0.89, 0.83, and 0.83 respectively. The
model has been deployed as a web application for public use at
(https://saketchaturvedi.github.io). This fast, expansible method holds the
potential for substantial clinical impact, including broadening the scope of
primary care practice and augmenting clinical decision-making for dermatology
specialists.Comment: This is a pre-copyedited version of a contribution published in
Advances in Intelligent Systems and Computing, Hassanien A., Bhatnagar R.,
Darwish A. (eds) published by Chaturvedi S.S., Gupta K., Prasad P.S. The
definitive authentication version is available online via
https://doi.org/10.1007/978-981-15-3383-9_1
Transit Photometry as an Exoplanet Discovery Method
Photometry with the transit method has arguably been the most successful
exoplanet discovery method to date. A short overview about the rise of that
method to its present status is given. The method's strength is the rich set of
parameters that can be obtained from transiting planets, in particular in
combination with radial velocity observations; the basic principles of these
parameters are given. The method has however also drawbacks, which are the low
probability that transits appear in randomly oriented planet systems, and the
presence of astrophysical phenomena that may mimic transits and give rise to
false detection positives. In the second part we outline the main factors that
determine the design of transit surveys, such as the size of the survey sample,
the temporal coverage, the detection precision, the sample brightness and the
methods to extract transit events from observed light curves. Lastly, an
overview over past, current and future transit surveys is given. For these
surveys we indicate their basic instrument configuration and their planet
catch, including the ranges of planet sizes and stellar magnitudes that were
encountered. Current and future transit detection experiments concentrate
primarily on bright or special targets, and we expect that the transit method
remains a principal driver of exoplanet science, through new discoveries to be
made and through the development of new generations of instruments.Comment: Review chapte
SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer
Pancreatic cancer has a devastating prognosis, with an overall 5-year survival rate of ~8%, restricted treatment options and characteristic molecular heterogeneity. SerpinB2 expression, particularly in the stromal compartment, is associated with reduced metastasis and prolonged survival in pancreatic ductal adenocarcinoma (PDAC) and our genomic analysis revealed that SERPINB2 is frequently deleted in PDAC. We show that SerpinB2 is required by stromal cells for normal collagen remodelling in vitro, regulating fibroblast interaction and engagement with collagen in the contracting matrix. In a pancreatic cancer allograft model, co-injection of PDAC cancer cells and SerpinB2(-/-) mouse embryonic fibroblasts (MEFs) resulted in increased tumour growth, aberrant remodelling of the extracellular matrix (ECM) and increased local invasion from the primary tumour. These tumours also displayed elevated proteolytic activity of the primary biochemical target of SerpinB2-urokinase plasminogen activator (uPA). In a large cohort of patients with resected PDAC, we show that increasing uPA mRNA expression was significantly associated with poorer survival following pancreatectomy. This study establishes a novel role for SerpinB2 in the stromal compartment in PDAC invasion through regulation of stromal remodelling and highlights the SerpinB2/uPA axis for further investigation as a potential therapeutic target in pancreatic cancer
A rocky planet transiting a nearby low-mass star
M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of
the size of the Sun -- are the most common class of star in our Galaxy and
outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M
dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf
planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per
star. The nearest such planets known to transit their star are 39 parsecs away,
too distant for detailed follow-up observations to measure the planetary masses
or to study their atmospheres. Here we report observations of GJ 1132b, a
planet with a size of 1.2 Earth radii that is transiting a small star 12
parsecs away. Our Doppler mass measurement of GJ 1132b yields a density
consistent with an Earth-like bulk composition, similar to the compositions of
the six known exoplanets with masses less than six times that of the Earth and
precisely measured densities. Receiving 19 times more stellar radiation than
the Earth, the planet is too hot to be habitable but is cool enough to support
a substantial atmosphere, one that has probably been considerably depleted of
hydrogen. Because the host star is nearby and only 21 per cent the radius of
the Sun, existing and upcoming telescopes will be able to observe the
composition and dynamics of the planetary atmosphere.Comment: Published in Nature on 12 November 2015, available at
http://dx.doi.org/10.1038/nature15762. This is the authors' version of the
manuscrip
Planet Populations as a Function of Stellar Properties
Exoplanets around different types of stars provide a window into the diverse
environments in which planets form. This chapter describes the observed
relations between exoplanet populations and stellar properties and how they
connect to planet formation in protoplanetary disks. Giant planets occur more
frequently around more metal-rich and more massive stars. These findings
support the core accretion theory of planet formation, in which the cores of
giant planets form more rapidly in more metal-rich and more massive
protoplanetary disks. Smaller planets, those with sizes roughly between Earth
and Neptune, exhibit different scaling relations with stellar properties. These
planets are found around stars with a wide range of metallicities and occur
more frequently around lower mass stars. This indicates that planet formation
takes place in a wide range of environments, yet it is not clear why planets
form more efficiently around low mass stars. Going forward, exoplanet surveys
targeting M dwarfs will characterize the exoplanet population around the lowest
mass stars. In combination with ongoing stellar characterization, this will
help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
P2P Web service based system for supporting decision-making in cellular manufacturing scheduling
With the increase of the Internet and Virtual Enterprises (VEs), interfaces for web systems and automated services are becoming an emergent necessity. In this paper we propose a Peer-to-peer (P2P) web-based decision-support system for enabling access to different manufacturing scheduling methods, which can be remotely available and accessible from a distributed knowledge base. The XML-based modeling and communication is applied to manufacturing scheduling. Therefore, manufacturing scheduling problems and methods are modeled using XML. The proposed P2P web-based system works as web services, under the SOAP protocol. The system’s distributed knowledge base enables sharing information about scheduling problems and corresponding solving methods in a widened search space, through a scheduling community, integrating a VE. Running several methods enables different results for a given problem, consequently, contributing for a better decision-making. An important aspect is that this knowledge base can be easily and continuously updated by any contributor through the VE. Moreover, through this system once suitable available methods, for a given problem, are identified, it enables running one or more of them, for enabling a better manufacturing scheduling support, enhanced though incorporated fuzzy decision-making proceduresAichi Science and Technology Foundation(PTDC/EME-GIN/102143/2008)info:eu-repo/semantics/publishedVersio
A Systematic Review and Meta-Analysis of Utility-Based Quality of Life in Chronic Kidney Disease Treatments
Background: Chronic kidney disease (CKD) is a common and costly condition to treat. Economic evaluations of health care often incorporate patient preferences for health outcomes using utilities. The objective of this study was to determine pooled utility-based quality of life (the numerical value attached to the strength of an individual's preference for a specific health outcome) by CKD treatment modality. Methods and Findings: We conducted a systematic review, meta-analysis, and meta-regression of peer-reviewed published articles and of PhD dissertations published through 1 December 2010 that reported utility-based quality of life (utility) for adults with late-stage CKD. Studies reporting utilities by proxy (e.g., reported by a patient's doctor or family member) were excluded. In total, 190 studies reporting 326 utilities from over 56,000 patients were analysed. There were 25 utilities from pre-treatment CKD patients, 226 from dialysis patients (haemodialysis, n = 163; peritoneal dialysis, n = 44), 66 from kidney transplant patients, and three from patients treated with non-dialytic conservative care. Using time tradeoff as a referent instrument, kidney transplant recipients had a mean utility of 0.82 (95% CI: 0.74, 0.90). The mean utility was comparable in pre-treatment CKD patients (difference = -0.02; 95% CI: -0.09, 0.04), 0.11 lower in dialysis patients (95% CI: -0.15, -0.08), and 0.2 lower in conservative care patients (95% CI: -0.38, -0.01). Patients treated with automated peritoneal dialysis had a significantly higher mean utility (0.80) than those on continuous ambulatory peritoneal dialysis (0.72; p = 0.02). The mean utility of transplant patients increased over time, from 0.66 in the 1980s to 0.85 in the 2000s, an increase of 0.19 (95% CI: 0.11, 0.26). Utility varied by elicitation instrument, with standard gamble producing the highest estimates, and the SF-6D by Brazier et al., University of Sheffield, producing the lowest estimates. The main limitations of this study were that treatment assignments were not random, that only transplant had longitudinal data available, and that we calculated EuroQol Group EQ-5D scores from SF-36 and SF-12 health survey data, and therefore the algorithms may not reflect EQ-5D scores measured directly. Conclusions: For patients with late-stage CKD, treatment with dialysis is associated with a significant decrement in quality of life compared to treatment with kidney transplantation. These findings provide evidence-based utility estimates to inform economic evaluations of kidney therapies, useful for policy makers and in individual treatment discussions with CKD patients. © 2012 Wyld et al
The validation analysis of the INSHORE system: a precise and efficient coastal survey system
Government and environmental entities are becoming increasingly concerned with qualifying and quantifying the erosion effects that are observed in sandy shores. Correspondingly, survey methodologies that gather data for such erosion studies are increasingly being demanded. The responsible entities are continually broadening their areas of interest, are concerned in the establishment of regular monitoring programmes and are demanding high accuracy from the geo-spatial data that is collected. The budget available for such monitoring activities, however, does not parallel the trend in the increasing demand for quality specifications. Survey methodologies need improvement to meet these requirements. We have developed a new land-based survey system-the INSHORE system-that is ideal for low cost, highly efficient and highly precise coastal surveys. The INSHORE system uses hi-tech hardware that is based on high-grade global positioning system (GPS) receivers and a laser distance sensor combined with advanced software algorithms. This system enables the determination of the ground coordinates of the surveyed areas with a precision of 1 to 2 cm, without having a sensor in contact with the ground surface. The absence of physical contact with the ground makes this system suitable for high-efficiency surveys. The accuracy of the positioning, which is based on advanced differential GPS processing, is enhanced by considering the estimated attitude of the GPS receiver holding structure and eliminates undesirable offsets. This paper describes the INSHORE survey system and presents the results of validation tests that were performed in a sandy shore environment
- …
