2,037 research outputs found

    Dirac Equation with Spin Symmetry for the Modified P\"oschl-Teller Potential in DD-dimensions

    Full text link
    We present solutions of the Dirac equation with spin symmetry for vector and scalar modified P\"oschl-Teller potential within framework of an approximation of the centrifugal term. The relativistic energy spectrum is obtained using the Nikiforov-Uvarov method and the two-component spinor wavefunctions are obtain are in terms of the Jacobi polynomials. It is found that there exist only positive-energy states for bound states under spin symmetry, and the energy levels increase with the dimension and the potential range parameter α\alpha.Comment: 9 pages and 1tabl

    Colonist, 1889-02-15

    Get PDF
    The Colonist began on 6 March 1886, changing its name to The Newfoundland Colonist after 18 July 1891. Having printed local and international news Monday to Saturday for six years, the paper came to an abrupt end when its offices were destroyed in The Great Fire of 8 July 1892.Title variations recorded in Alternative Title, as needed

    Comparative population structure of <i>Plasmodium malariae</i> and <i>Plasmodium falciparum</i> under different transmission settings in Malawi

    Get PDF
    &lt;b&gt;Background:&lt;/b&gt; Described here is the first population genetic study of Plasmodium malariae, the causative agent of quartan malaria. Although not as deadly as Plasmodium falciparum, P. malariae is more common than previously thought, and is frequently in sympatry and co-infection with P. falciparum, making its study increasingly important. This study compares the population parameters of the two species in two districts of Malawi with different malaria transmission patterns - one seasonal, one perennial - to explore the effects of transmission on population structures. &lt;BR/&gt; &lt;b&gt;Methods:&lt;/b&gt; Six species-specific microsatellite markers were used to analyse 257 P. malariae samples and 257 P. falciparum samples matched for age, gender and village of residence. Allele sizes were scored to within 2 bp for each locus and haplotypes were constructed from dominant alleles in multiple infections. Analysis of multiplicity of infection (MOI), population differentiation, clustering of haplotypes and linkage disequilibrium was performed for both species. Regression analyses were used to determine association of MOI measurements with clinical malaria parameters. &lt;BR/&gt; &lt;b&gt;Results:&lt;/b&gt; Multiple-genotype infections within each species were common in both districts, accounting for 86.0% of P. falciparum and 73.2% of P. malariae infections and did not differ significantly with transmission setting. Mean MOI of P. falciparum was increased under perennial transmission compared with seasonal (3.14 vs 2.59, p = 0.008) and was greater in children compared with adults. In contrast, P. malariae mean MOI was similar between transmission settings (2.12 vs 2.11) and there was no difference between children and adults. Population differentiation showed no significant differences between villages or districts for either species. There was no evidence of geographical clustering of haplotypes. Linkage disequilibrium amongst loci was found only for P. falciparum samples from the seasonal transmission setting. &lt;BR/&gt; &lt;b&gt;Conclusions:&lt;/b&gt; The extent of similarity between P. falciparum and P. malariae population structure described by the high level of multiple infection, the lack of significant population differentiation or haplotype clustering and lack of linkage disequilibrium is surprising given the differences in the biological features of these species that suggest a reduced potential for out-crossing and transmission in P. malariae. The absence of a rise in P. malariae MOI with increased transmission or a reduction in MOI with age could be explained by differences in the duration of infection or degree of immunity compared to P. falciparum

    Extracellular Matrix Aggregates from Differentiating Embryoid Bodies as a Scaffold to Support ESC Proliferation and Differentiation

    Get PDF
    Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications. © 2013 Goh et al

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    The influence of the team in conducting a systematic review

    Get PDF
    There is an increasing body of research documenting flaws in many published systematic reviews' methodological and reporting conduct. When good systematic review practice is questioned, attention is rarely turned to the composition of the team that conducted the systematic review. This commentary highlights a number of relevant articles indicating how the composition of the review team could jeopardise the integrity of the systematic review study and its conclusions. Key biases require closer attention such as sponsorship bias and researcher allegiance, but there may also be less obvious affiliations in teams conducting secondary evidence-syntheses. The importance of transparency and disclosure are now firmly on the agenda for clinical trials and primary research, but the meta-biases that systematic reviews may be at risk from now require further scrutiny

    The entropy of black holes: a primer

    Full text link
    After recalling the definition of black holes, and reviewing their energetics and their classical thermodynamics, one expounds the conjecture of Bekenstein, attributing an entropy to black holes, and the calculation by Hawking of the semi-classical radiation spectrum of a black hole, involving a thermal (Planckian) factor. One then discusses the attempts to interpret the black-hole entropy as the logarithm of the number of quantum micro-states of a macroscopic black hole, with particular emphasis on results obtained within string theory. After mentioning the (technically cleaner, but conceptually more intricate) case of supersymmetric (BPS) black holes and the corresponding counting of the degeneracy of Dirichlet-brane systems, one discusses in some detail the ``correspondence'' between massive string states and non-supersymmetric Schwarzschild black holes.Comment: 51 pages, 4 figures, talk given at the "Poincare seminar" (Paris, 6 December 2003), to appear in Poincare Seminar 2003 (Birkhauser

    Ab initio alpha-alpha scattering

    Get PDF
    Processes involving alpha particles and alpha-like nuclei comprise a major part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. In an effort towards understanding alpha processes from first principles, we describe in this letter the first ab initio calculation of alpha-alpha scattering. We use lattice effective field theory to describe the low-energy interactions of nucleons and apply a technique called the adiabatic projection method to reduce the eight-body system to an effective two-cluster system. We find good agreement between lattice results and experimental phase shifts for S-wave and D-wave scattering. The computational scaling with particle number suggests that alpha processes involving heavier nuclei are also within reach in the near future.Comment: 6 pages, 6 figure
    corecore