325 research outputs found

    Carbon storage and DNA absorption in allophanic soils and paleosols

    Get PDF
    Andisols and andic paleosols dominated by the nanocrystalline mineral allophane sequester large amounts of carbon (C), attributable mainly to its chemical bonding with charged hydroxyl groups on the surface of allophane together with its physical protection in nanopores within and between allophane nanoaggregates. C near-edge X-ray absorption fine structure (NEXAFS) spectra for a New Zealand Andisol (Tirau series) showed that the organic matter (OM) mainly comprises quinonic, aromatic, aliphatic, and carboxylic C. In different buried horizons from several other Andisols, C contents varied but the C species were similar, attributable to pedogenic processes operating during developmental upbuilding, downward leaching, or both. The presence of OM in natural allophanic soils weakened the adsorption of DNA on clay; an adsorption isotherm experiment involving humic acid (HA) showed that HA-free synthetic allophane adsorbed seven times more DNA than HA-rich synthetic allophane. Phosphorus X-ray absorption near-edge structure (XANES) spectra for salmonsperm DNA and DNA-clay complexes indicated that DNA was bound to the allophane clay through the phosphate group, but it is not clear if DNA was chemically bound to the surface of the allophane or to OM, or both. We plan more experiments to investigate interactions among DNA, allophane (natural and synthetic), and OM. Because DNA shows a high affinity to allophane, we are studying the potential to reconstruct late Quaternary palaeoenvironments by attempting to extract and characterise ancient DNA from allophanic paleosol

    An investigation to assess ankle mobility in healthy individuals from the application of multi-component compression bandages and compression hosiery

    Get PDF
    Background An investigation was undertaken to compare the effect of multi-component compression bandages and compression hosiery kits on individuals’ range of ankle motion whilst wearing typical and medical footwear, and barefoot. Methods A convenience sample of 30 healthy individuals recruited from the staff and student population at the University of Huddersfield, UK. Plantarflexion/dorsiflexion range of ankle motion (ROAM) was measured in participants over 6 steps in every combination of typical, medical and no footwear; and multi-component bandages, compression hosiery and no garments. Results Controlling for age, gender and garments, the use of typical footwear was associated with a mean increase in ROAM of 2.54° at best estimate compared with barefoot; the use of medical footwear was associated with a mean decrease in ROAM of 1.12° at best estimate compared with barefoot. Controlling for age, gender and footwear, the use of bandaging was associated with a mean decrease in ROAM of 2.51° at best estimate compared with no garments. Controlling for age, gender and footwear, the use of hosiery was not associated with a significant change in ROAM compared with no garments. Conclusions Bandages appear to restrict ROAM more than hosiery when used in conjunction with a variety of footwear types

    Histone arginine methylation regulates pluripotency in the early mouse embryo

    Get PDF
    It has been generally accepted that the mammalian embryo starts its development with all cells identical, and only when inside and outside cells form do differences between cells first emerge. However, recent findings show that cells in the mouse embryo can differ in their developmental fate and potency as early as the four-cell stage1,2,3,4. These differences depend on the orientation and order of the cleavage divisions that generated them2,5. Because epigenetic marks are suggested to be involved in sustaining pluripotency6,7, we considered that such developmental properties might be achieved through epigenetic mechanisms. Here we show that modification of histone H3, through the methylation of specific arginine residues, is correlated with cell fate and potency. Levels of H3 methylation at specific arginine residues are maximal in four-cell blastomeres that will contribute to the inner cell mass (ICM) and polar trophectoderm and undertake full development when combined together in chimaeras. Arginine methylation of H3 is minimal in cells whose progeny contributes more to the mural trophectoderm and that show compromised development when combined in chimaeras. This suggests that higher levels of H3 arginine methylation predispose blastomeres to contribute to the pluripotent cells of the ICM. We confirm this prediction by overexpressing the H3-specific arginine methyltransferase CARM1 in individual blastomeres and show that this directs their progeny to the ICM and results in a dramatic upregulation of Nanog and Sox2. Thus, our results identify specific histone modifications as the earliest known epigenetic marker contributing to development of ICM and show that manipulation of epigenetic information influences cell fate determination

    Guiding principles for the development and application of solid-phase phosphorus adsorbents for freshwater ecosystems

    Get PDF
    While a diverse array of phosphorus (P)-adsorbent materials is currently available for application to freshwater aquatic systems, selection of the most appropriate P-adsorbents remains problematic. In particular, there has to be a close correspondence between attributes of the P-adsorbent, its field performance, and the management goals for treatment. These management goals may vary from a rapid reduction in dissolved P to address seasonal enrichments from internal loading, targeting external fluxes due to anthropogenic sources, or long term inactivation of internal P inventories contained within bottom sediments. It also remains a challenge to develop new methods and materials that are ecologically benign and cost-effective. We draw on evidence in the literature and the authors’ personal experiences in the field, to summarise the attributes of a range of P-adsorbent materials. We offer 'guiding principles' to support practical use of existing materials and outline key development needs for new materials

    Bone fragility and decline in stem cells in prematurely aging DNA repair deficient trichothiodystrophy mice

    Get PDF
    Trichothiodystrophy (TTD) is a rare, autosomal recessive nucleotide excision repair (NER) disorder caused by mutations in components of the dual functional NER/basal transcription factor TFIIH. TTD mice, carrying a patient-based point mutation in the Xpd gene, strikingly resemble many features of the human syndrome and exhibit signs of premature aging. To examine to which extent TTD mice resemble the normal process of aging, we thoroughly investigated the bone phenotype. Here, we show that female TTD mice exhibit accelerated bone aging from 39 weeks onwards as well as lack of periosteal apposition leading to reduced bone strength. Before 39 weeks have passed, bones of wild-type and TTD mice are identical excluding a developmental defect. Albeit that bone formation is decreased, osteoblasts in TTD mice retain bone-forming capacity as in vivo PTH treatment leads to increased cortical thickness. In vitro bone marrow cell cultures showed that TTD osteoprogenitors retain the capacity to differentiate into osteoblasts. However, after 13 weeks of age TTD females show decreased bone nodule formation. No increase in bone resorption or the number of osteoclasts was detected. In conclusion, TTD mice show premature bone aging, which is preceded by a decrease in mesenchymal stem cells/osteoprogenitors and a change in systemic factors, identifying DNA damage and repair as key determinants for bone fragility by influencing osteogenesis and bone metabolism

    IPCC reasons for concern regarding climate change risks

    Get PDF
    The reasons for concern framework communicates scientific understanding about risks in relation to varying levels of climate change. The framework, now a cornerstone of the IPCC assessments, aggregates global risks into five categories as a function of global mean temperature change. We review the framework's conceptual basis and the risk judgments made in the most recent IPCC report, confirming those judgments in most cases in the light of more recent literature and identifying their limitations. We point to extensions of the framework that offer complementary climate change metrics to global mean temperature change and better account for possible changes in social and ecological system vulnerability. Further research should systematically evaluate risks under alternative scenarios of future climatic and societal conditions

    Control of Bone Mass and Remodeling by PTH Receptor Signaling in Osteocytes

    Get PDF
    Osteocytes, former osteoblasts buried within bone, are thought to orchestrate skeletal adaptation to mechanical stimuli. However, it remains unknown whether hormones control skeletal homeostasis through actions on osteocytes. Parathyroid hormone (PTH) stimulates bone remodeling and may cause bone loss or bone gain depending on the balance between bone resorption and formation. Herein, we demonstrate that transgenic mice expressing a constitutively active PTH receptor exclusively in osteocytes exhibit increased bone mass and bone remodeling, as well as reduced expression of the osteocyte-derived Wnt antagonist sclerostin, increased Wnt signaling, increased osteoclast and osteoblast number, and decreased osteoblast apoptosis. Deletion of the Wnt co-receptor LDL related receptor 5 (LRP5) attenuates the high bone mass phenotype but not the increase in bone remodeling induced by the transgene. These findings demonstrate that PTH receptor signaling in osteocytes increases bone mass and the rate of bone remodeling through LRP5-dependent and -independent mechanisms, respectively

    Bone refilling in cortical bone multicellular units: Insights into tetracycline double labelling from a computational model

    Get PDF
    Bone remodelling is carried out by `bone multicellular units' (BMUs) in which active osteoclasts and active osteoblasts are spatially and temporally coupled. The refilling of new bone by osteoblasts towards the back of the BMU occurs at a rate that depends both on the number of osteoblasts and on their secretory activity. In cortical bone, a linear phenomenological relationship between matrix apposition rate (MAR) and BMU cavity radius is found experimentally. How this relationship emerges from the combination of complex, nonlinear regulations of osteoblast number and secretory activity is unknown. Here, we extend our previous mathematical model of cell development within a single BMU to investigate how osteoblast number and osteoblast secretory activity vary along the BMU's closing cone. MARs predicted by the model are compared with data from tetracycline double labelling experiments. We find that the linear phenomenological relationship observed in these experiments between MAR and BMU cavity radius holds for most of the refilling phase simulated by our model, but not near the start and end of refilling. This suggests that at a particular bone site undergoing remodelling, bone formation starts and ends rapidly. Our model also suggests that part of the observed cross-sectional variability in tetracycline data may be due to different bone sites being refilled by BMUs at different stages of their lifetime. The different stages of a BMU's lifetime depend on whether the cell populations within the BMU are still developing or have reached a quasi-steady state while travelling through bone. We find that due to their longer lifespan, active osteoblasts reach a quasi-steady distribution more slowly than active osteoclasts. We suggest that this fact may locally enlarge the Haversian canal diameter (due to a local lack of osteoblasts compared to osteoclasts) near the BMU's point of origin.Comment: 16 pages, 6 figures, 3 tables. V3: minor changes: added 2 paragraphs (BMU cavity in Section 2 and Model Robustness in Section 4), references [52,54

    Effects of an Early Handling-Like Procedure and Individual Housing on Anxiety-Like Behavior in Adult C57BL/6J and DBA/2J Mice

    Get PDF
    Manipulations of rearing conditions have been used to examine the effects of early experience on adult behavior with varying results. Evidence suggests that postnatal days (PND) 15–21 are a time of particular susceptibility to environmental influences on anxiety-like behavior in mice. To examine this, we subjected C57BL/6J and DBA/2J mice to an early handling-like procedure. Pups were separated from dams from PND 12–20 for 30 minutes daily or received standard care. On PND 21, pups were weaned and either individually- or group- housed. On PND 60, anxiety-like behavior was examined on the elevated zero-maze. Although individually- housed animals took longer to enter an open quadrant of the maze, they spent more time in the open than group-housed animals. Additionally, we observed a trend of reduced anxiety-like behavior in C57BL/6J, but not DBA/2J mice that underwent the handling-like procedure

    Capacitative calcium influx and proliferation of human osteoblastic-like MG-63 cells

    Get PDF
    Adult bone tissue is continuously being remodelled and bone mass is maintained by a balance between osteoclastic bone resorption and osteoblastic bone formation. Alteration of osteoblastic cell proliferation may account in part for lack of balance between these two processes in bone loss of osteoporosis. There is calcium (Ca2+) control in numerous cellular functions; however, involvement of capacitative Ca2+ entry (CCE) in proliferation of bone cells is less well investigated. OBJECTIVES: The study described here was aimed to investigate roles of CCE in the proliferation of osteoblast-like MG-63 cells. MATERIALS AND METHODS: Pharmacological characterizations of CCE were undertaken in parallel, with evaluation of the expression of transient receptor potential canonical (TRPC) channels and of cell proliferation. RESULTS: Intracellular Ca2+ store depletion by thapsigargin induced CCE in MG-63 cells; this was characterized by a rapid transient increase of intracellular Ca2+ followed by significant CCE, induced by conditions that stimulated cell proliferation, namely serum and platelet-derived growth factor. Inhibitors of store-operated Ca2+ channels (2-APB and SKF-96365) prevented CCE, while voltage-dependent Ca2+ channel blockers had no effect. Expression of various TRPC channels was shown in the cells, some having been shown to be responsible for CCE. Voltage-dependent Ca2+ channel blockers had no effect on osteoblast proliferation while thapsigargin, 2-APB and SKF-96395, inhibited it. Cell cycle analysis showed that 2-APB and SKF-96395 lengthen the S and G2/M phases, which would account for the reduction in cell proliferation. CONCLUSIONS: Our results indicate that CCE, likely attributed to the activation of TRPCs, might be the main route for Ca2+ influx involved in osteoblast proliferation
    corecore