35 research outputs found

    First-line therapy in atypical hemolytic uremic syndrome: consideration on infants with a poor prognosis.

    Get PDF
    BackgroundAtypical hemolytic uremic syndrome (aHUS) is a rare and heterogeneous disorder. The first line treatment of aHUS is plasma therapy, but in the past few years, the recommendations have changed greatly with the advent of eculizumab, a humanized monoclonal anti C5-antibody. Although recent recommendations suggest using it as a primary treatment for aHUS, important questions have arisen about the necessity of immediate use of eculizumab in all cases. We aimed to draw attention to a specific subgroup of aHUS patients with rapid disease progression and high mortality, in whom plasma therapy may not be feasible.MethodsWe present three pediatric patients of acute complement-mediated HUS with a fatal outcome. Classical and alternative complement pathway activity, levels of complement factors C3, C4, H, B and I, as well as of anti-factor H autoantibody and of ADAMTS13 activity were determined. The coding regions of CFH, CFI, CD46, THBD, CFB and C3 genes were sequenced and the copy number of CFI, CD46, CFH and related genes were analyzed.ResultsWe found severe activation and consumption of complement components in these patients, furthermore, in one patient we identified a previously not reported mutation in CFH (Ser722Stop), supporting the diagnosis of complement-mediated HUS. These patients were not responsive to the FFP therapy, and all cases had fatal outcome.ConclusionTaking the heterogeneity and the variable prognosis of atypical HUS into account, we suggest that the immediate use of eculizumab should be considered as first-line therapy in certain small children with complement dysregulation

    Association of germline genetic variants with breast cancer-specific survival in patient subgroups defined by clinic-pathological variables related to tumor biology and type of systemic treatment

    Get PDF
    BACKGROUND: Given the high heterogeneity among breast tumors, associations between common germline genetic variants and survival that may exist within specific subgroups could go undetected in an unstratified set of breast cancer patients. METHODS: We performed genome-wide association analyses within 15 subgroups of breast cancer patients based on prognostic factors, including hormone receptors, tumor grade, age, and type of systemic treatment. Analyses were based on 91,686 female patients of European ancestry from the Breast Cancer Association Consortium, including 7531 breast cancer-specific deaths over a median follow-up of 8.1 years. Cox regression was used to assess associations of common germline variants with 15-year and 5-year breast cancer-specific survival. We assessed the probability of these associations being true positives via the Bayesian false discovery probability (BFDP < 0.15). RESULTS: Evidence of associations with breast cancer-specific survival was observed in three patient subgroups, with variant rs5934618 in patients with grade 3 tumors (15-year-hazard ratio (HR) [95% confidence interval (CI)] 1.32 [1.20, 1.45], P = 1.4E-08, BFDP = 0.01, per G allele); variant rs4679741 in patients with ER-positive tumors treated with endocrine therapy (15-year-HR [95% CI] 1.18 [1.11, 1.26], P = 1.6E-07, BFDP = 0.09, per G allele); variants rs1106333 (15-year-HR [95% CI] 1.68 [1.39,2.03], P = 5.6E-08, BFDP = 0.12, per A allele) and rs78754389 (5-year-HR [95% CI] 1.79 [1.46,2.20], P = 1.7E-08, BFDP = 0.07, per A allele), in patients with ER-negative tumors treated with chemotherapy. CONCLUSIONS: We found evidence of four loci associated with breast cancer-specific survival within three patient subgroups. There was limited evidence for the existence of associations in other patient subgroups. However, the power for many subgroups is limited due to the low number of events. Even so, our results suggest that the impact of common germline genetic variants on breast cancer-specific survival might be limited

    PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS

    Get PDF
    Background The rarity of mutations in PALB2, CHEK2 and ATM make it difficult to estimate precisely associated cancer risks. Population-based family studies have provided evidence that at least some of these mutations are associated with breast cancer risk as high as those associated with rare BRCA2 mutations. We aimed to estimate the relative risks associated with specific rare variants in PALB2, CHEK2 and ATM via a multicentre case-control study. Methods We genotyped 10 rare mutations using the custom iCOGS array: PALB2 c.1592delT, c.2816T>G and c.3113G>A, CHEK2 c.349A>G, c.538C>T, c.715G>A, c.1036C>T, c.1312G>T, and c.1343T>G and ATM c.7271T>G. We assessed associations with breast cancer risk (42 671 cases and 42 164 controls), as well as prostate (22 301 cases and 22 320 controls) and ovarian (14 542 cases and 23 491 controls) cancer risk, for each variant. Results For European women, strong evidence of association with breast cancer risk was observed for PALB2 c.1592delT OR 3.44 (95% CI 1.39 to 8.52, p=7.1x10-5), PALB2 c.3113G>A OR 4.21 (95% CI 1.84 to 9.60, p=6.9x10-8) and ATM c.7271T>G OR 11.0 (95% CI 1.42 to 85.7, p=0.0012). We also found evidence of association with breast cancer risk for three variants in CHEK2, c.349A>G OR 2.26 (95% CI 1.29 to 3.95), c.1036C>T OR 5.06 (95% CI 1.09 to 23.5) and c.538C>T OR 1.33 (95% CI 1.05 to 1.67) (p=0.017). Evidence for prostate cancer risk was observed for CHEK2 c.1343T>G OR 3.03 (95% CI 1.53 to 6.03, p=0.0006) for African men and CHEK2 c.1312G>T OR 2.21 (95% CI 1.06 to 4.63, p=0.030) for European men. No evidence of association with ovarian cancer was found for any of these variants. Conclusions This report adds to accumulating evidence that at least some variants in these genes are associated with an increased risk of breast cancer that is clinically important

    Association analysis identifies 65 new breast cancer risk loci

    Get PDF
    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P < 5 × 10-8. The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.We thank all the individuals who took part in these studies and all the researchers, clinicians, technicians and administrative staff who have enabled this work to be carried out. Genotyping of the OncoArray was principally funded from three sources: the PERSPECTIVE project, funded by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, the ‘Ministère de l’Économie, de la Science et de l’Innovation du Québec’ through Genome Québec, and the Quebec Breast Cancer Foundation; the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) initiative and Discovery, Biology and Risk of Inherited Variants in Breast Cancer (DRIVE) project (NIH Grants U19 CA148065 and X01HG007492); and Cancer Research UK (C1287/A10118 and C1287/A16563). BCAC is funded by Cancer Research UK (C1287/A16563), by the European Community’s Seventh Framework Programme under grant agreement 223175 (HEALTH-F2-2009-223175) (COGS) and by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreements 633784 (B-CAST) and 634935 (BRIDGES). Genotyping of the iCOGS array was funded by the European Union (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10710), the Canadian Institutes of Health Research for the ‘CIHR Team in Familial Risks of Breast Cancer’ program, and the Ministry of Economic Development, Innovation and Export Trade of Quebec, grant PSR-SIIRI-701. Combining of the GWAS data was supported in part by The National Institute of Health (NIH) Cancer Post-Cancer GWAS initiative grant U19 CA 148065 (DRIVE, part of the GAME-ON initiative)

    Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes

    Get PDF
    Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57–1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628–0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.Peer reviewe
    corecore