131 research outputs found

    Developing an ecologically relevant heterogeneous biofilm model for dental-unit waterlines

    Get PDF
    This study monitored the biodiversity of microbes cultured from a heterogeneous biofilm which had formed on the lumen of a section of dental waterline tubing over a period of 910 days. By day two bacterial counts on the outlet-water showed that contamination of the system had occurred. After 14 days, a biofilm comparable to that of clinical waterlines, consisting of bacteria, fungi and amoebae had formed. This showed that the proprietary silver coating applied to the lumenal surface of the commercial waterline tubing failed to prevent biofilm formation. Molecular barcoding of isolated culturable microorganisms showed some degree of the diversity of taxa in the biofilm, including the opportunistic pathogen Legionella pneumophila. Whilst the system used for isolation and identification of contaminating microorganisms may underestimate the diversity of organisms in the biofilm, their similarity to those found in the clinical environment makes this a promising test-bed for future biocide testing

    Assessing variations of extreme indices inducing weather-hazards on critical infrastructures over Europe?the INTACT framework

    Get PDF
    Extreme weather events are projected to be more frequent and severe across the globe because of global warming. This poses challenging problems for critical infrastructures, which could be dramatically affected (or disrupted), and may require adaptation plans to the changing climate conditions. The INTACT FP7-European project evaluated the resilience and vulnerability of critical infrastructures to extreme weather events in a climate change scenario. To identify changes in the hazard induced by climate change, appropriate extreme weather indicators (EWIs), as proxies of the main atmospheric features triggering events with high impact on the infrastructures, were defined for a number of case studies and different approaches were analyzed to obtain local climate projections. We considered the influence of weighting and bias correction schemes on the delta approach followed to obtain the resulting projections, considering data from the Euro-CORDEX ensemble of regional future climate scenarios over Europe. The aim is to provide practitioners, decision-makers, and administrators with appropriate methods to obtain actionable and plausible results on local/regional future climate scenarios. Our results show a small sensitivity to the weighting approach and a large sensitivity to bias correcting the future projections.This work has been carried out within the activities of INTACT project, receiving funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° FP7-SEC-2013-1-606799. The information and views set out in this paper are those of the authors and do not necessarily reflect the opinion of the European Union. We acknowledge the World Climate Research Programme's Working Group on Regional Climate, and the Working Group on Coupled Modelling, former coordinating body of CORDEX and responsible panel for CMIP5

    Retinoic acid induces HL-60 cell differentiation via the upregulation of miR-663

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Differentiation of the acute myeloid leukemia (AML) cell line HL-60 can be induced by all trans-retinoic acid (ATRA); however, the mechanism regulating this process has not been fully characterized.</p> <p>Methods</p> <p>Using bioinformatics and <it>in vitro </it>experiments, we identified the microRNA gene expression profile of HL-60 cells during ATRA induced granulocytic differentiation.</p> <p>Results</p> <p>Six microRNAs were upregulated by ATRA treatment, miR-663, miR-494, miR-145, miR-22, miR-363* and miR-223; and three microRNAs were downregulated, miR-10a, miR-181 and miR-612. Additionally, miR-663 expression was regulated by ATRA. We used a lentivirus (LV) backbone incorporating the spleen focus forming virus (SFFV-F) promoter to drive miR-663 expression, as the CMV (Cytomegalovirus) promoter is ineffective in some lymphocyte cells. Transfection of LV-miR-663 induced significant HL-60 cell differentiation <it>in vitro</it>.</p> <p>Conclusions</p> <p>Our results show miR-663 may play an important role in ATRA induced HL-60 cell differentiation. Lentivirus delivery of miR-663 could potentially be used directly as an anticancer treatment in hematological malignancies</p

    Diacylglycerol regulates acute hypoxic pulmonary vasoconstriction via TRPC6

    Get PDF
    Background: Hypoxic pulmonary vasoconstriction (HPV) is an essential mechanism of the lung that matches blood perfusion to alveolar ventilation to optimize gas exchange. Recently we have demonstrated that acute but not sustained HPV is critically dependent on the classical transient receptor potential 6 (TRPC6) channel. However, the mechanism of TRPC6 activation during acute HPV remains elusive. We hypothesize that a diacylglycerol (DAG)-dependent activation of TRPC6 regulates acute HPV. Methods: We investigated the effect of the DAG analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) on normoxic vascular tone in isolated perfused and ventilated mouse lungs from TRPC6-deficient and wild-type mice. Moreover, the effects of OAG, the DAG kinase inhibitor R59949 and the phospholipase C inhibitor U73122 on the strength of HPV were investigated compared to those on non-hypoxia-induced vasoconstriction elicited by the thromboxane mimeticum U46619. Results: OAG increased normoxic vascular tone in lungs from wild-type mice, but not in lungs from TRPC6-deficient mice. Under conditions of repetitive hypoxic ventilation, OAG as well as R59949 dose-dependently attenuated the strength of acute HPV whereas U46619-induced vasoconstrictions were not reduced. Like OAG, R59949 mimicked HPV, since it induced a dose-dependent vasoconstriction during normoxic ventilation. In contrast, U73122, a blocker of DAG synthesis, inhibited acute HPV whereas U73343, the inactive form of U73122, had no effect on HPV. Conclusion: These findings support the conclusion that the TRPC6-dependency of acute HPV is induced via DAG

    A hierarchical and modular approach to the discovery of robust associations in genome-wide association studies from pooled DNA samples

    Get PDF
    [Background] One of the challenges of the analysis of pooling-based genome wide association studies is to identify authentic associations among potentially thousands of false positive associations. [Results] We present a hierarchical and modular approach to the analysis of genome wide genotype data that incorporates quality control, linkage disequilibrium, physical distance and gene ontology to identify authentic associations among those found by statistical association tests. The method is developed for the allelic association analysis of pooled DNA samples, but it can be easily generalized to the analysis of individually genotyped samples. We evaluate the approach using data sets from diverse genome wide association studies including fetal hemoglobin levels in sickle cell anemia and a sample of centenarians and show that the approach is highly reproducible and allows for discovery at different levels of synthesis. [Conclusion] Results from the integration of Bayesian tests and other machine learning techniques with linkage disequilibrium data suggest that we do not need to use too stringent thresholds to reduce the number of false positive associations. This method yields increased power even with relatively small samples. In fact, our evaluation shows that the method can reach almost 70% sensitivity with samples of only 100 subjects.Supported by NHLBI grants R21 HL080463 (PS); R01 HL68970 (MHS); K-24, AG025727 (TP); K23 AG026754 (D.T.)

    Identification of Metabolites in the Normal Ovary and Their Transformation in Primary and Metastatic Ovarian Cancer

    Get PDF
    In this study, we characterized the metabolome of the human ovary and identified metabolic alternations that coincide with primary epithelial ovarian cancer (EOC) and metastatic tumors resulting from primary ovarian cancer (MOC) using three analytical platforms: gas chromatography mass spectrometry (GC/MS) and liquid chromatography tandem mass spectrometry (LC/MS/MS) using buffer systems and instrument settings to catalog positive or negative ions. The human ovarian metabolome was found to contain 364 biochemicals and upon transformation of the ovary caused changes in energy utilization, altering metabolites associated with glycolysis and β-oxidation of fatty acids—such as carnitine (1.79 fold in EOC, p<0.001; 1.88 fold in MOC, p<0.001), acetylcarnitine (1.75 fold in EOC, p<0.001; 2.39 fold in MOC, p<0.001), and butyrylcarnitine (3.62 fold, p<0.0094 in EOC; 7.88 fold, p<0.001 in MOC). There were also significant changes in phenylalanine catabolism marked by increases in phenylpyruvate (4.21 fold; p = 0.0098) and phenyllactate (195.45 fold; p<0.0023) in EOC. Ovarian cancer also displayed an enhanced oxidative stress response as indicated by increases in 2-aminobutyrate in EOC (1.46 fold, p = 0.0316) and in MOC (2.25 fold, p<0.001) and several isoforms of tocopherols. We have also identified novel metabolites in the ovary, specifically N-acetylasparate and N-acetyl-aspartyl-glutamate, whose role in ovarian physiology has yet to be determined. These data enhance our understanding of the diverse biochemistry of the human ovary and demonstrate metabolic alterations upon transformation. Furthermore, metabolites with significant changes between groups provide insight into biochemical consequences of transformation and are candidate biomarkers of ovarian oncogenesis. Validation studies are warranted to determine whether these compounds have clinical utility in the diagnosis or clinical management of ovarian cancer patients

    The FunGenES Database: A Genomics Resource for Mouse Embryonic Stem Cell Differentiation

    Get PDF
    Embryonic stem (ES) cells have high self-renewal capacity and the potential to differentiate into a large variety of cell types. To investigate gene networks operating in pluripotent ES cells and their derivatives, the “Functional Genomics in Embryonic Stem Cells” consortium (FunGenES) has analyzed the transcriptome of mouse ES cells in eleven diverse settings representing sixty-seven experimental conditions. To better illustrate gene expression profiles in mouse ES cells, we have organized the results in an interactive database with a number of features and tools. Specifically, we have generated clusters of transcripts that behave the same way under the entire spectrum of the sixty-seven experimental conditions; we have assembled genes in groups according to their time of expression during successive days of ES cell differentiation; we have included expression profiles of specific gene classes such as transcription regulatory factors and Expressed Sequence Tags; transcripts have been arranged in “Expression Waves” and juxtaposed to genes with opposite or complementary expression patterns; we have designed search engines to display the expression profile of any transcript during ES cell differentiation; gene expression data have been organized in animated graphs of KEGG signaling and metabolic pathways; and finally, we have incorporated advanced functional annotations for individual genes or gene clusters of interest and links to microarray and genomic resources. The FunGenES database provides a comprehensive resource for studies into the biology of ES cells

    Modeling CICR in rat ventricular myocytes: voltage clamp studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes, with voltage clamp (VC) studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect <it>Ca</it><sup>2+ </sup>loading of the sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR <it>Ca</it><sup>2+ </sup>release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic <it>Ca</it><sup>2+ </sup>concentration ([<it>Ca</it><sup>2+</sup>]<it><sub>myo</sub></it>).</p> <p>Methods</p> <p>The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed <it>Ca</it><sup>2+ </sup>channels (trigger-channel and release-channel). It releases <it>Ca</it><sup>2+ </sup>flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[<it>Ca</it><sup>2+</sup>]<it><sub>myo</sub></it>.</p> <p>Results</p> <p>Our model reproduces measured VC data published by several laboratories, and generates graded <it>Ca</it><sup>2+ </sup>release at high <it>Ca</it><sup>2+ </sup>gain in a homeostatically-controlled environment where [<it>Ca</it><sup>2+</sup>]<it><sub>myo </sub></it>is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR <it>Ca</it><sup>2+ </sup>release, its activation by trigger <it>Ca</it><sup>2+</sup>, and its refractory characteristics mediated by the luminal SR <it>Ca</it><sup>2+ </sup>sensor. Proper functioning of the DCU, sodium-calcium exchangers and SERCA pump are important in achieving negative feedback control and hence <it>Ca</it><sup>2+ </sup>homeostasis.</p> <p>Conclusions</p> <p>We examine the role of the above <it>Ca</it><sup>2+ </sup>regulating mechanisms in handling various types of induced disturbances in <it>Ca</it><sup>2+ </sup>levels by quantifying cellular <it>Ca</it><sup>2+ </sup>balance. Our model provides biophysically-based explanations of phenomena associated with CICR generating useful and testable hypotheses.</p
    corecore