12 research outputs found
Chaos and Elliptical Galaxies
Recent results on chaos in triaxial galaxy models are reviewed. Central mass
concentrations like those observed in early-type galaxies -- either stellar
cusps, or massive black holes -- render most of the box orbits in a triaxial
potential stochastic. Typical Liapunov times are 3-5 crossing times, and
ensembles of stochastic orbits undergo mixing on time scales that are roughly
an order of magnitude longer. The replacement of the regular orbits by
stochastic orbits reduces the freedom to construct self-consistent equilibria,
and strong triaxiality can be ruled out for galaxies with sufficiently high
central mass concentrations.Comment: uuencoded gziped PostScript, 12 pages including figure
Intrinsic Shapes of Elliptical Galaxies
Tests for the intrinsic shape of the luminosity distribution in elliptical
galaxies are discussed, with an emphasis on the uncertainties. Recent
determinations of the ellipticity frequency function imply a paucity of nearly
spherical galaxies, and may be inconsistent with the oblate hypothesis.
Statistical tests based on the correlation of surface brightness, isophotal
twisting, and minor axis rotation with ellipticity have so far not provided
strong evidence in favor of the nearly oblate or nearly prolate hypothesis, but
are at least qualitatively consistent with triaxiality. The possibility that
the observed deviations of elliptical galaxy isophotes form ellipses are due to
projection effects is evaluated. Dynamical instabilities may explain the
absence of elliptical galaxies flatter than about E6, and my also play a role
in the lack of nearly-spherical galaxies
Multidimensional Characterization and Differentiation of Neurons in the Anteroventral Cochlear Nucleus
Multiple parallel auditory pathways ascend from the cochlear nucleus. It is generally accepted that the origin of these pathways are distinct groups of neurons differing in their anatomical and physiological properties. In extracellular in vivo recordings these neurons are typically classified on the basis of their peri-stimulus time histogram. In the present study we reconsider the question of classification of neurons in the anteroventral cochlear nucleus (AVCN) by taking a wider range of response properties into account. The study aims at a better understanding of the AVCN's functional organization and its significance as the source of different ascending auditory pathways. The analyses were based on 223 neurons recorded in the AVCN of the Mongolian gerbil. The range of analysed parameters encompassed spontaneous activity, frequency coding, sound level coding, as well as temporal coding. In order to categorize the unit sample without any presumptions as to the relevance of certain response parameters, hierarchical cluster analysis and additional principal component analysis were employed which both allow a classification on the basis of a multitude of parameters simultaneously. Even with the presently considered wider range of parameters, high number of neurons and more advanced analytical methods, no clear boundaries emerged which would separate the neurons based on their physiology. At the current resolution of the analysis, we therefore conclude that the AVCN units more likely constitute a multi-dimensional continuum with different physiological characteristics manifested at different poles. However, more complex stimuli could be useful to uncover physiological differences in future studies
