153 research outputs found
Measurement of the B0 anti-B0 oscillation frequency using l- D*+ pairs and lepton flavor tags
The oscillation frequency Delta-md of B0 anti-B0 mixing is measured using the
partially reconstructed semileptonic decay anti-B0 -> l- nubar D*+ X. The data
sample was collected with the CDF detector at the Fermilab Tevatron collider
during 1992 - 1995 by triggering on the existence of two lepton candidates in
an event, and corresponds to about 110 pb-1 of pbar p collisions at sqrt(s) =
1.8 TeV. We estimate the proper decay time of the anti-B0 meson from the
measured decay length and reconstructed momentum of the l- D*+ system. The
charge of the lepton in the final state identifies the flavor of the anti-B0
meson at its decay. The second lepton in the event is used to infer the flavor
of the anti-B0 meson at production. We measure the oscillation frequency to be
Delta-md = 0.516 +/- 0.099 +0.029 -0.035 ps-1, where the first uncertainty is
statistical and the second is systematic.Comment: 30 pages, 7 figures. Submitted to Physical Review
Alcohol consumers’ attention to warning labels and brand information on alcohol packaging: Findings from cross-sectional and experimental studies
Background
Alcohol warning labels have a limited effect on drinking behavior, potentially because people devote minimal attention to them. We report findings from two studies in which we measured the extent to which alcohol consumers attend to warning labels on alcohol packaging, and aimed to identify if increased attention to warning labels is associated with motivation to change drinking behavior.
Methods
Study 1 (N = 60) was an exploratory cross-sectional study in which we used eye-tracking to measure visual attention to brand and health information on alcohol and soda containers. In study 2 (N = 120) we manipulated motivation to reduce drinking using an alcohol brief intervention (vs control intervention) and measured heavy drinkers’ attention to branding and warning labels with the same eye-tracking paradigm as in study 1. Then, in a separate task we experimentally manipulated attention by drawing a brightly colored border around health (or brand) information before measuring participants’ self-reported drinking intentions for the subsequent week.
Results
Study 1 showed that participants paid minimal attention to warning labels (7% of viewing time). Participants who were motivated to reduce drinking paid less attention to alcohol branding and alcohol warning labels. Results from study 2 showed that the alcohol brief intervention decreased attention to branding compared to the control condition, but it did not affect attention to warning labels. Furthermore, the experimental manipulation of attention to health or brand information did not influence drinking intentions for the subsequent week.
Conclusions
Alcohol consumers allocate minimal attention to warning labels on alcohol packaging and even if their attention is directed to these warning labels, this has no impact on their drinking intentions. The lack of attention to warning labels, even among people who actively want to cut down, suggests that there is room for improvement in the content of health warnings on alcohol packaging
Two Host Factors Regulate Persistence of H7a-Specific T Cells Injected in Tumor-Bearing Mice
BACKGROUND: Injection of CD8 T cells primed against immunodominant minor histocompatibility antigens (MiHA) such as H7(a) can eradicate leukemia and solid tumors. To understand why MiHA-targeted T cells have such a potent antitumor effect it is essential to evaluate their in vivo behavior. In the present work, we therefore addressed two specific questions: what is the proliferative dynamics of H7(a)-specifc T cells in tumors, and do H7(a)-specific T cells persist long-term after adoptive transfer? METHODOLOGY/PRINCIPAL FINDINGS: By day 3 after adoptive transfer, we observed a selective infiltration of melanomas by anti-H7(a) T cells. Over the next five days, anti-H7(a) T cells expanded massively in the tumor but not in the spleen. Thus, by day 8 after injection, anti-H7(a) T cells in the tumor had undergone more cell divisions than those in the spleen. These data strongly suggest that anti-H7(a) T cells proliferate preferentially and extensively in the tumors. We also found that two host factors regulated long-term persistence of anti-H7(a) memory T cells: thymic function and expression of H7(a) by host cells. On day 100, anti-H7(a) memory T cells were abundant in euthymic H7(a)-negative (B10.H7(b)) mice, present in low numbers in thymectomized H7(a)-positive (B10) hosts, and undetectable in euthymic H7(a)-positive recipients. CONCLUSIONS/SIGNIFICANCE: Although in general the tumor environment is not propitious to T-cell invasion and expansion, the present work shows that this limitation may be overcome by adoptive transfer of primed CD8 T cells targeted to an immunodominant MiHA (here H7(a)). At least in some cases, prolonged persistence of adoptively transferred T cells may be valuable for prevention of late cancer relapse in adoptive hosts. Our findings therefore suggest that it may be advantageous to target MiHAs with a restricted tissue distribution in order to promote persistence of memory T cells and thereby minimize the risk of cancer recurrence
Delayed infusion of immunocompetent donor cells after bone marrow transplantation breaks graft-host tolerance allows for persistent antileukemic reactivity without severe graft-versus-host disease
The development of graft-host tolerance after bone marrow transplantation (BMT) is crucial to avoid the problems of graft-versus-host disease (GVHD) and graft rejection. GVHD can be eliminated by depleting mature donor T cells from the BM inoculum, thereby facilitating the development of graft-host tolerance. However, T-cell depletion often results in an increased incidence of graft rejection and an increased frequency of leukemia relapse. Thus, although graft-host tolerance is a desirable outcome, it can pose a significant threat to leukemia-bearing hosts. Using a major histocompatability complex (MHC)-matched allogeneic model of BMT (B10.BR into AKR), we found that irradiated recipients given donor BM alone displayed mixed T-cell chimerism and did not develop GVHD. Graft-host tolerance developed by 8 weeks after BMT in these chimeras, and they were susceptible to low-dose leukemia challenge. When sufficient numbers of donor spleen cells, as a source of T-cells, were added to the BM graft, AKR hosts developed severe and lethal GVHD. Antihost reactive donor T cells persisted in chimeras undergoing GVHD, indicating that graft-host tolerance did not develop. When administration of the spleen cells was delayed for 7 to 21 days after BMT, there was significantly less mortality because of GVHD. Day 21 was the optimal time for infusion of cells without development of GVHD. Graft-host tolerance was broken by the delayed infusion of donor cells, as indicated by the persistence of antihost-reactive donor T cells in these chimeras in T-cell receptor cross-linking and mixed lymphocyte reaction assays. Importantly, the persistence of antihost-reactive donor T cells correlated with along-term antileukemic effect that was still present at 100 days after transplant. Multiple infusions of immunocompetent donor cells could be administered without increasing the risk for GVHD if delayed until 21 days post-BMT. Delayed infusions of donor spleen cells also resulted in a long-term antileukemic effect in the absence of GVHD in an MHC-haplotype-mismatched model of BMT (SJL into [SJL x AKR]F1). Although delayed infusion of normal donor cells did not induce GVHD, spleen cells from donors previously sensitized to host alloantigens induced GVHD when infused 21 days after BMT. Thus, the ability of previously activated cells to induce GVHD was not inhibited in the same manner as naive cells. Results from limiting dilution analysis assays indicated that alloactivated interleukin-2-secreting CD4+ T cells were preferentially inhibited over cytolytic T cells.(ABSTRACT TRUNCATED AT 400 WORDS)</jats:p
Impact of pretransplant conditioning and donor T cells on chimerism, graft-versus-host disease, graft-versus-leukemia reactivity, and tolerance after bone marrow transplantation
Graft rejection, mixed chimerism, graft-versus-host disease (GVHD), leukemia relapse, and tolerance are interrelated manifestations of immunologic reactivity between donor and host cells that significantly affect survival after allogeneic bone marrow transplantation (BMT). In this report, a mouse model of BMT, in which the donor and host were compatible at the major histocompatibility complex (MHC), was used (1) to examine the interrelationship of pretransplant conditioning and T- cell content of donor BM with regard to lymphoid chimerism and GVHD and (2) to determine how these factors affected graft-versus-leukemia (GVL) reactivity and donor-host-tolerance. AKR (H-2k) host mice were administered optimal or suboptimal total body irradiation (TBI) as pretransplant conditioning followed by administration of BM cells from B10.BR (H-2k) donor mice with or without added spleen cells as a source of T lymphocytes. Transplanted mice were injected with a supralethal dose of AKR leukemia cells 20 and 45 days post-BMT to assess GVL reactivity in vivo. The pretransplant conditioning of the host and T- cell content of the donor marrow affected the extent of donor T-cell chimerism and the severity of GVH disease. GVL reactivity was dependent on transplantation of mature donor T cells and occurred only in complete chimeras. Transplantation of T-cell-deficient BM resulted in the persistence of host T cells, ie, incomplete donor T-cell chimerism, even when lethal TBI was used. Mixed chimerism was associated with a lack of GVL reactivity, despite the fact that similar numbers of donor T cells were present in the spleens of mixed and complete chimeras. In this model, moderate numbers of donor T cells facilitated complete donor T-cell engraftment, caused only mild GVHD, and provided a significant GVL effect without preventing the subsequent development of tolerance after conditioning with suboptimal TBI. In contrast, severe, often lethal, GVHD developed when the dose of TBI was increased, whereas tolerance and no GVH/GVL reactivity developed when the T-cell content of the marrow was decreased.</jats:p
Impact of pretransplant conditioning and donor T cells on chimerism, graft-versus-host disease, graft-versus-leukemia reactivity, and tolerance after bone marrow transplantation
Abstract
Graft rejection, mixed chimerism, graft-versus-host disease (GVHD), leukemia relapse, and tolerance are interrelated manifestations of immunologic reactivity between donor and host cells that significantly affect survival after allogeneic bone marrow transplantation (BMT). In this report, a mouse model of BMT, in which the donor and host were compatible at the major histocompatibility complex (MHC), was used (1) to examine the interrelationship of pretransplant conditioning and T- cell content of donor BM with regard to lymphoid chimerism and GVHD and (2) to determine how these factors affected graft-versus-leukemia (GVL) reactivity and donor-host-tolerance. AKR (H-2k) host mice were administered optimal or suboptimal total body irradiation (TBI) as pretransplant conditioning followed by administration of BM cells from B10.BR (H-2k) donor mice with or without added spleen cells as a source of T lymphocytes. Transplanted mice were injected with a supralethal dose of AKR leukemia cells 20 and 45 days post-BMT to assess GVL reactivity in vivo. The pretransplant conditioning of the host and T- cell content of the donor marrow affected the extent of donor T-cell chimerism and the severity of GVH disease. GVL reactivity was dependent on transplantation of mature donor T cells and occurred only in complete chimeras. Transplantation of T-cell-deficient BM resulted in the persistence of host T cells, ie, incomplete donor T-cell chimerism, even when lethal TBI was used. Mixed chimerism was associated with a lack of GVL reactivity, despite the fact that similar numbers of donor T cells were present in the spleens of mixed and complete chimeras. In this model, moderate numbers of donor T cells facilitated complete donor T-cell engraftment, caused only mild GVHD, and provided a significant GVL effect without preventing the subsequent development of tolerance after conditioning with suboptimal TBI. In contrast, severe, often lethal, GVHD developed when the dose of TBI was increased, whereas tolerance and no GVH/GVL reactivity developed when the T-cell content of the marrow was decreased.</jats:p
Impact of pretransplant conditioning and donor T cells on chimerism, graft-versus-host disease, graft-versus-leukemia reactivity, and tolerance after bone marrow transplantation
Impact of pretransplant conditioning and donor T cells on chimerism, graft-versus-host disease, graft-versus-leukemia reactivity, and tolerance after bone marrow transplantation
Detection of residual leukemia by the polymerase chain reaction and sequence-specific oligonucleotide probe hybridization after allogeneic bone marrow transplantation for AKR leukemia: a murine model for minimal residual disease
Abstract
Disease relapse after allogeneic bone marrow transplantation (BMT) is a major cause of treatment failure and is thought to evolve from clinically occult residual disease in the recipient. However, the demonstration of minimal residual disease (MRD) in individual patients is of uncertain prognostic significance because the detection of residual disease has not consistently correlated with subsequent relapse. Moreover, the optimal therapeutic approach in patients with MRD after allogeneic BMT is unknown. The study of these issues has been hindered by the lack of clinically relevant animal models. In this report, we characterize a novel murine model for the study of MRD after allogeneic BMT. This model was designed to simulate high-risk BMT in humans in which patients receive transplants in relapse and disease recurrence in the major cause of treatment failure. The H-2-compatible, mixed lymphocyte culture nonreactive murine strains, AKR (H-2k) and CBA (H-2k), were chosen to parallel marrow transplants from HLA-matched siblings, which represent the majority of allo-transplants in humans. Male AKR leukemia cells were used in female donor/host chimeras permitting the Y chromosome to serve as a leukemia-specific marker for MRD. Detection of residual male leukemia cells in the peripheral blood of the primary host was facilitated by use of the polymerase chain reaction (PCR) and sequence-specific oligonucleotide probe hybridization (SSOPH). Use of PCR/SSOPH was highly predictive of clinical outcome (relapse or cure) in animals receiving transplants (P < .00002) and detected disease recurrence earlier than comparative flow cytometric analysis studies. This murine model will be useful in evaluating the efficacy of therapeutic strategies aimed at reducing disease relapse posttransplant and can be adapted to other transplant murine tumor systems for the study of MRD.</jats:p
- …
