1,550 research outputs found
Semileptonic decays of the standard Higgs boson
The Higgs boson decay into a pair of real or virtual W bosons, with one of
them decaying leptonically, is predicted within the Standard Model to have the
largest branching fraction of all Higgs decays that involve an isolated
electron or muon, for M_h > 120 GeV. We compute analytically the
fully-differential width for this h -> l \nu jj decay at tree level, and then
explore some multi-dimensional cuts that preserve the region of large signal.
Future searches for semileptonic decays at the Tevatron and LHC, employing
fully-differential information as outlined here, may be essential for ruling
out or in the Higgs boson and for characterizing a Higgs signal.Comment: 17 pages, 5 .eps figure
Higgs friends and counterfeits at hadron colliders
We consider the possibility of "Higgs counterfeits" - scalars that can be
produced with cross sections comparable to the SM Higgs, and which decay with
identical relative observable branching ratios, but which are nonetheless not
responsible for electroweak symmetry breaking. We also consider a related
scenario involving "Higgs friends," fields similarly produced through gg fusion
processes, which would be discovered through diboson channels WW, ZZ, gamma
gamma, or even gamma Z, potentially with larger cross sections times branching
ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs
counterfeit, rather than directly pointing towards the origin of the weak
scale, would indicate the presence of new colored fields necessary for the
sizable production cross section (and possibly new colorless but electroweakly
charged states as well, in the case of the diboson decays of a Higgs friend).
These particles could easily be confused for an ordinary Higgs, perhaps with an
additional generation to explain the different cross section, and we emphasize
the importance of vector boson fusion as a channel to distinguish a Higgs
counterfeit from a true Higgs. Such fields would naturally be expected in
scenarios with "effective Z's," where heavy states charged under the SM produce
effective charges for SM fields under a new gauge force. We discuss the
prospects for discovery of Higgs counterfeits, Higgs friends, and associated
charged fields at the LHC.Comment: 27 pages, 5 figures. References added and typos fixe
Absolutely stable proton and lowering the gauge unification scale
A unified model is constructed, based on flipped SU(5) in which the proton is absolutely stable. The model requires the existence of new leptons with masses of order the weak scale. The possibility that the unification scale could be extremely low is discussed
6D supergravity without tensor multiplets
We systematically investigate the finite set of possible gauge groups and
matter content for N = 1 supergravity theories in six dimensions with no tensor
multiplets, focusing on nonabelian gauge groups which are a product of SU(N)
factors. We identify a number of models which obey all known low-energy
consistency conditions, but which have no known string theory realization. Many
of these models contain novel matter representations, suggesting possible new
string theory constructions. Many of the most exotic matter structures arise in
models which precisely saturate the gravitational anomaly bound on the number
of hypermultiplets. Such models have a rigid symmetry structure, in the sense
that there are no moduli which leave the full gauge group unbroken.Comment: 31 pages, latex; v2, v3: minor corrections, references adde
New Physics Signals in Longitudinal Gauge Boson Scattering at the LHC
We introduce a novel technique designed to look for signatures of new physics
in vector boson fusion processes at the TeV scale. This functions by measuring
the polarization of the vector bosons to determine the relative longitudinal to
transverse production. In studying this ratio we can directly probe the high
energy E^2-growth of longitudinal vector boson scattering amplitudes
characteristic of models with non-Standard Model (SM) interactions. We will
focus on studying models parameterized by an effective Lagrangian that include
a light Higgs with non-SM couplings arising from TeV scale new physics
associated with the electroweak symmetry breaking, although our technique can
be used in more general scenarios. We will show that this technique is stable
against the large uncertainties that can result from variations in the
factorization scale, improving upon previous studies that measure cross section
alone
QCD-like theories at nonzero temperature and density
We investigate the properties of hot and/or dense matter in QCD-like theories
with quarks in a (pseudo)real representation of the gauge group using the
Nambu-Jona-Lasinio model. The gauge dynamics is modeled using a simple lattice
spin model with nearest-neighbor interactions. We first keep our discussion as
general as possible, and only later focus on theories with adjoint quarks of
two or three colors. Calculating the phase diagram in the plane of temperature
and quark chemical potential, it is qualitatively confirmed that the critical
temperature of the chiral phase transition is much higher than the
deconfinement transition temperature. At a chemical potential equal to half of
the diquark mass in the vacuum, a diquark Bose-Einstein condensation (BEC)
phase transition occurs. In the two-color case, a Ginzburg-Landau expansion is
used to study the tetracritical behavior around the intersection point of the
deconfinement and BEC transition lines, which are both of second order. We
obtain a compact expression for the expectation value of the Polyakov loop in
an arbitrary representation of the gauge group (for any number of colors),
which allows us to study Casimir scaling at both nonzero temperature and
chemical potential.Comment: JHEP class, 31 pages, 7 eps figures; v2: error in Eq. (3.11) fixed,
two references added; matches published versio
Composite Higgs Search at the LHC
The Higgs boson production cross-sections and decay rates depend, within the
Standard Model (SM), on a single unknown parameter, the Higgs mass. In
composite Higgs models where the Higgs boson emerges as a pseudo-Goldstone
boson from a strongly-interacting sector, additional parameters control the
Higgs properties which then deviate from the SM ones. These deviations modify
the LEP and Tevatron exclusion bounds and significantly affect the searches for
the Higgs boson at the LHC. In some cases, all the Higgs couplings are reduced,
which results in deterioration of the Higgs searches but the deviations of the
Higgs couplings can also allow for an enhancement of the gluon-fusion
production channel, leading to higher statistical significances. The search in
the H to gamma gamma channel can also be substantially improved due to an
enhancement of the branching fraction for the decay of the Higgs boson into a
pair of photons.Comment: 32 pages, 16 figure
Locality in Theory Space
Locality is a guiding principle for constructing realistic quantum field
theories. Compactified theories offer an interesting context in which to think
about locality, since interactions can be nonlocal in the compact directions
while still being local in the extended ones. In this paper, we study locality
in "theory space", four-dimensional Lagrangians which are dimensional
deconstructions of five-dimensional Yang-Mills. In explicit ultraviolet (UV)
completions, one can understand the origin of theory space locality by the
irrelevance of nonlocal operators. From an infrared (IR) point of view, though,
theory space locality does not appear to be a special property, since the
lowest-lying Kaluza-Klein (KK) modes are simply described by a gauged nonlinear
sigma model, and locality imposes seemingly arbitrary constraints on the KK
spectrum and interactions. We argue that these constraints are nevertheless
important from an IR perspective, since they affect the four-dimensional cutoff
of the theory where high energy scattering hits strong coupling. Intriguingly,
we find that maximizing this cutoff scale implies five-dimensional locality. In
this way, theory space locality is correlated with weak coupling in the IR,
independent of UV considerations. We briefly comment on other scenarios where
maximizing the cutoff scale yields interesting physics, including theory space
descriptions of QCD and deconstructions of anti-de Sitter space.Comment: 40 pages, 11 figures; v2: references and clarifications added; v3:
version accepted by JHE
Predictions for Higgs production at the Tevatron and the associated uncertainties
We update the theoretical predictions for the production cross sections of
the Standard Model Higgs boson at the Fermilab Tevatron collider, focusing on
the two main search channels, the gluon-gluon fusion mechanism and
the Higgs-strahlung processes with , including all
relevant higher order QCD and electroweak corrections in perturbation theory.
We then estimate the various uncertainties affecting these predictions: the
scale uncertainties which are viewed as a measure of the unknown higher order
effects, the uncertainties from the parton distribution functions and the
related errors on the strong coupling constant, as well as the uncertainties
due to the use of an effective theory approach in the determination of the
radiative corrections in the process at next-to-next-to-leading
order. We find that while the cross sections are well under control in the
Higgs--strahlung processes, the theoretical uncertainties are rather large in
the case of the gluon-gluon fusion channel, possibly shifting the central
values of the next-to-next-to-leading order cross sections by more than
. These uncertainties are thus significantly larger than the
error assumed by the CDF and D0 experiments in their recent
analysis that has excluded the Higgs mass range 162-166 GeV at the 95%
confidence level. These exclusion limits should be, therefore, reconsidered in
the light of these large theoretical uncertainties.Comment: 40 pages, 12 figures. A few typos are corrected and some updated
numbers are provide
Strong interface-induced spin-orbit coupling in graphene on WS2
Interfacial interactions allow the electronic properties of graphene to be
modified, as recently demonstrated by the appearance of satellite Dirac cones
in the band structure of graphene on hexagonal boron nitride (hBN) substrates.
Ongoing research strives to explore interfacial interactions in a broader class
of materials in order to engineer targeted electronic properties. Here we show
that at an interface with a tungsten disulfide (WS2) substrate, the strength of
the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The
induced SOI leads to a pronounced low-temperature weak anti-localization (WAL)
effect, from which we determine the spin-relaxation time. We find that
spin-relaxation time in graphene is two-to-three orders of magnitude smaller on
WS2 than on SiO2 or hBN, and that it is comparable to the intervalley
scattering time. To interpret our findings we have performed first-principle
electronic structure calculations, which both confirm that carriers in
graphene-on-WS2 experience a strong SOI and allow us to extract a
spin-dependent low-energy effective Hamiltonian. Our analysis further shows
that the use of WS2 substrates opens a possible new route to access topological
states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines.
Final version with expanded discussion of the relation between theory and
experiments to be published in Nature Communication
- …
