478 research outputs found

    Polytropic stars in bootstrapped Newtonian gravity

    Full text link
    We study self-gravitating stars in the bootstrapped Newtonian picture for polytropic equations of state. We consider stars that span a wide range of compactness values. Both matter density and pressure are sources of the gravitational potential. Numerical solutions show that the density profiles can be well approximated by Gaussian functions. Later we assume Gaussian density profiles to investigate the interplay between the compactness of the source, the width of the Gaussian density profile and the polytropic index. We also dedicate a section to comparing the pressure and density profiles of the bootstrapped Newtonian stars to the corresponding General Relativistic solutions. We also point out that no Buchdahl limit is found, which means that the pressure can in principle support a star of arbitrarily large compactness. In fact, we find solutions representing polytropic stars with compactness above the Buchdhal limit.Comment: 21 pages, 10 figure

    Brane-world stars from minimal geometric deformation, and black holes

    Full text link
    We build analytical models of spherically symmetric stars in the brane-world, in which the external space-time contains both an ADM mass and a tidal charge. In order to determine the interior geometry, we apply the principle of minimal geometric deformation, which allows one to map General Relativistic solutions to solutions of the effective four-dimensional brane-world equations. We further restrict our analysis to stars with a radius linearly related to the total General Relativistic mass, and obtain a general relation between the latter, the brane-world ADM mass and the tidal charge. In these models, the value of the star's radius can then be taken to zero smoothly, thus obtaining brane-world black hole metrics with a tidal charge solely determined by the mass of the source and the brane tension. General conclusions regarding the minimum mass for semiclassical black holes will also be drawn.Comment: 23 pages, 2 figures, references added and update

    The role of collapsed matter in the decay of black holes

    Get PDF
    We try to shed some light on the role of matter in the final stages of black hole evaporation from the fundamental frameworks of classicalization and the black-to-white hole bouncing scenario. Despite being based on very different grounds, these two approaches attempt at going beyond the background field method and treat black holes as fully quantum systems rather than considering quantum field theory on the corresponding classical manifolds. They also lead to the common prediction that the semiclassical description of black hole evaporation should break down and the system be disrupted by internal quantum pressure, but they both arrive at this conclusion neglecting the matter that formed the black hole. We instead estimate this pressure from the bootstrapped description of black holes, which allows us to express the total Arnowitt-Deser-Misner mass in terms of the baryonic mass still present inside the black hole. We conclude that, although these two scenarios provide qualitatively similar predictions for the final stages, the corpuscular model does not seem to suggest any sizeable deviation from the semiclassical time scale at which the disruption should occur, unlike the black-to-white hole bouncing scenario. This, in turn, makes the phenomenology of corpuscular black holes more subtle from an astrophysical perspective.Comment: 5 pages, no figur

    Horizon Quantum Mechanics of collapsing shells

    Get PDF
    We study the probability that a horizon appears when concentric shells of matter collide, by computing the horizon wave-function of the system. We mostly consider the collision of two ultra-relativistic shells, both shrinking and expanding, at the moment their radii are equal, and find a probability that the system is a black hole which is in qualitative agreement with what one would expect according to the hoop conjecture and the uncertainty principle of quantum physics, and parallels the results obtained for simpler sources. One new feature however emerges, in that this probability shows a modulation with the momenta of the shells and the radius at which the shells collide, as a manifestation of quantum mechanical interference. Finally, we also consider the case of one light shell collapsing into a larger central mass.Comment: 21 pages, 11 figure

    The Method of Comparison Equations for Schwarzschild Black Holes

    Get PDF
    We employ the method of comparison equations to study the propagation of a massless minimally coupled scalar field on the Schwarzschild background. In particular, we show that this method allows us to obtain explicit approximate expressions for the radial modes with energy below the peak of the effective potential which are fairly accurate over the whole region outside the horizon. This case can be of particular interest, for example, for the problem of black hole evaporation.Comment: 7 pages, added figures. Version to appear in PR

    Can black holes and naked singularities be detected in accelerators?

    Get PDF
    We study the conditions for the existence of black holes that can be produced in colliders at TeV-scale if the space-time is higher dimensional. On employing the microcanonical picture, we find that their life-times strongly depend on the details of the model. If the extra dimensions are compact (ADD model), microcanonical deviations from thermality are in general significant near the fundamental TeV mass and tiny black holes decay more slowly than predicted by the canonical expression, but still fast enough to disappear almost instantaneously. However, with one warped extra dimension (RS model), microcanonical corrections are much larger and tiny black holes appear to be (meta)stable. Further, if the total charge is not zero, we argue that naked singularities do not occur provided the electromagnetic field is strictly confined on an infinitely thin brane. However, they might be produced in colliders if the effective thickness of the brane is of the order of the fundamental length scale (~1/TeV).Comment: 6 pages, RevTeX 3, 1 figure and 1 table, important changes and addition

    Thermal corpuscular black holes

    Full text link
    We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number NN of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy mm (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy ω>m\omega>m). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding NN-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M=NmM=N\,m and a Planckian distribution for E>ME>M at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction precisely related with the Hawking component. By means of the horizon wave-function for the system, we finally show the backreaction of modes with ω>m\omega>m reduces the Hawking flux. Both corrections, to the entropy and to the Hawking flux, suggest the evaporation properly stops for vanishing mass, if the black hole is in this particular quantum state.Comment: PDFLaTeX, 15 pages, 2 figure. Version to appear in PR
    corecore