594 research outputs found
Impacts of horizontal resolution on simulated climate statistics in ECHAM4
The sensitivity of a general circulation model to changes in resolution is studied using the Max Planck Institute for Meteorology (MPI) 19-level model, ECHAM4. Simulations extending over a period between 10 and 15 years, with observed sea surface temperatures as lower boundary conditions from 1979 onward, have been performed using four different horizontal resolutions, T21, T30, T42 and T106. The atmospheric time-mean state and the intraseasonal variability are compared to the European Centre for Medium Range Weather Forecasts (ECMWF) reanalyses and a few other observational datasets. The T30, T42 and T106 simulations are similar in many respects, whereas the T21 simula- tion is qualitatively different. Several effects related to model resolution could be identi- fied, such as increasing tropical upper tropospheric warming with increasing resolution. This is due to more vigorous tropical convection, larger ice water content and, hence, increasing cirrus cloud greenhouse effect. Associated with this increasing warming at higher resolution is a poleward expansion of the zonally averaged circulation regime. On the other hand, the zonally asymmetric component of the circulation, i.e., the stationary waves, improve with higher resolution. Also, higher resolution has a positive impact on regional precipitation patterns which are affected by orography such as the summer mon- soon precipitation over India. Intraseasonal variability has been analyzed only for the higher resolution models, T42 and T106. Compared to the ECMWF reanalyses, both models are able to simulate the intrasea- sonal geopotential height variability, eddy fluxes of heat and momentum, and eddy kinetic energy with reasonable accuracy. This applies to transient eddies in both the bandpass and lowpass regime and to the stationary eddies as well. Some biases can be identified which are more or less independent of resolution. These include the mislocation of the Azores high and the overestimation of its intensity, a cold bias in the polar upper troposphere and lower stratosphere and the poleward and upward displacement of the maxima of geopotential height variability, momentum fluxes and eddy kinetic energy. An important finding is that the operational ECMWF analyses, which have been widely used for model validation, considerably overestimate the lowpass variability, as compared to the reanalyses, due to frequent changes of the forecast model and data assimilation scheme. This implies that the results from our investigations are not directly comparable to previous investigations that used operational analyses for validation
The evolution of the global aerosol system in a transient climate simulation from 1860 to 2100
The evolution of the global aerosol system from 1860 to 2100 is investigated through a transient atmosphere-ocean General Circulation Model climate simulation with interactively coupled atmospheric aerosol and oceanic biogeochemistry modules. The microphysical aerosol module HAM incorporates the major global aerosol cycles with prognostic treatment of their composition, size distribution, and mixing state. Based on an SRES A1B emission scenario, the global mean sulfate burden is projected to peak in 2020 while black carbon and particulate organic matter show a lagged peak around 2070. From present day to future conditions the anthropogenic aerosol burden shifts generally from the northern high-latitudes to the developing low-latitude source regions with impacts on regional climate. Atmospheric residence- and aging-times show significant alterations under varying climatic and pollution conditions. Concurrently, the aerosol mixing state changes with an increasing aerosol mass fraction residing in the internally mixed accumulation mode. The associated increase in black carbon causes a more than threefold increase of its co-single scattering albedo from 1860 to 2100. Mid-visible aerosol optical depth increases from pre-industrial times, predominantly from the aerosol fine fraction, peaks at 0.26 around the sulfate peak in 2020 and maintains a high level thereafter, due to the continuing increase in carbonaceous aerosols. The global mean anthropogenic top of the atmosphere clear-sky short-wave direct aerosol radiative perturbation intensifies to −1.1 W m^−2 around 2020 and weakens after 2050 to −0.6 W m^−2, owing to an increase in atmospheric absorption. The demonstrated modifications in the aerosol residence- and aging-times, the microphysical state, and radiative properties challenge simplistic approaches to estimate the aerosol radiative effects from emission projections
Impact of the North Atlantic thermohaline circulation on the European and Northern Atlantic weather in a coupled GCM simulation
A Normal-Mode Approach to Jovian Atmospheric Dynamics
We propose a nonlinear, quasi-geostrophic, baroclinic model of Jovian atmospheric dynamics, in which vertical variations of velocity are represented by a truncated sum over a complete set of orthogonal functions obtained by a separation of variables of the linearized quasi-geostrophic potential vorticity equation. A set of equations for the time variation of the mode amplitudes in the nonlinear case is then derived. We show that for a planet with a neutrally stable, fluid interior instead of a solid lower boundary, the baroclinic mode represents motions in the interior, and is not affected by the baroclinic modes. One consequence of this is that a normal-mode model with one baroclinic mode is dynamically equivalent to a one layer model with solid lower topography. We also show that for motions in Jupiter's cloudy lower troposphere, the stratosphere behaves nearly as a rigid lid, so that the normal-mode model is applicable to Jupiter. We test the accuracy of the normal-mode model for Jupiter using two simple problem forced, vertically propagating Rossby waves, using two and three baroclinic modes and baroclinic instability, using two baroclinic modes. We find that the normal-road model provide qualitatively correct results, even with only a very limited number of vertical degrees of freedom
Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM
The double-moment cloud microphysics scheme from ECHAM4 has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass and number concentrations and the aerosol mixing state. This results in a much better agreement with observed vertical profiles of the black carbon and aerosol mass mixing ratios than with the previous version ECHAM4, where only the different aerosol mass mixing ratios were predicted. Also, the simulated liquid, ice and total water content and the cloud droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase clouds between 0 and –35°C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for cloud droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient.
The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to –1.8 W m^−2 in ECHAM5, when a relative humidity dependent cloud cover scheme and present-day aerosol emissions representative for the year 2000 are used. It is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed
Predicting the '97 El Niño event with a global climate model
A simple data assimilation technique has been applied for initializing coupled ocean‐atmosphere general circulation models, which is able to generate the three‐dimensional thermal state of the low‐latitude oceans by forcing the model with observed anomalies of sea surface temperature. The scheme has been tested in a multi‐year experiment in which the vertical temperature profiles in the equatorial Pacific measured by the TOGA‐TAO array have been successfully reproduced for the period '96 to '97. In a further series of eight hindcast experiments initialized between January '96 and September '97, the predictive skill of the model was tested. All experiments starting in '97 correctly simulated the evolution of the '97 El Niño, although the amplitude was slightly underestimated. While the ocean was pre‐conditioned to create an El Niño already in '96, the model correctly stayed in the cold (La Niña) phase initially. All experiments initialized in '97 forecast a La Niña event for the middle of'98
Wolkenwasser über dem Atlantik - Vergleich zwischen Klimamodellergebnissen und Mikrowellenfernerkundung
Dynamical and cloud-radiation feedbacks in El Nino and greenhouse warming
An El Niño‐like steady response is found in a greenhouse warming simulation resulting from coupled ocean‐atmosphere dynamical feedbacks similar to those producing the present‐day El Niños. There is a strong negative cloud‐radiation feedback on the sea surface temperature (SST) anomaly associated with this enhanced eastern equatorial Pacific warm pattern. However, this negative feedback is overwhelmed by the positive dynamical feedbacks and cannot diminish the sensitivity of the tropical SST to enhanced greenhouse gas concentrations. The enhanced eastern‐Pacific warming in the coupled ocean‐atmosphere system suggests that coupled dynamics can strengthen this sensitivity
Recommended from our members
Tropical cyclones in a T159 Resolution Global Climate Model: comparison with observations and re-analyses
Tropical cyclones have been investigated in a T159 version of the MPI ECHAM5 climate model using a novel technique to diagnose the evolution of the 3-dimensional vorticity structure of tropical cyclones, including their full life cycle from weak initial vortex to their possible extra-tropical transition. Results have been compared with reanalyses (ERA40 and JRA25) and observed tropical storms during the period 1978-1999 for the Northern Hemisphere. There is no indication of any trend in the number or intensity of tropical storms during this period in ECHAM5 or in re-analyses but there are distinct inter-annual variations. The storms simulated by ECHAM5 are realistic both in space and time, but the model and even more so the re-analyses, underestimate the intensities of the most intense storms (in terms of their maximum wind speeds). There is an indication of a response to ENSO with a smaller number of Atlantic storms during El Niño in agreement with previous studies. The global divergence circulation responds to El Niño by setting up a large-scale convergence flow, with the center over the central Pacific with enhanced subsidence over the tropical Atlantic. At the same time there is an increase in the vertical wind shear in the region of the tropical Atlantic where tropical storms normally develop. There is a good correspondence between the model and ERA40 except that the divergence circulation is somewhat stronger in the model. The model underestimates storms in the Atlantic but tends to overestimate them in the Western Pacific and in the North Indian Ocean. It is suggested that the overestimation of storms in the Pacific by the model is related to an overly strong response to the tropical Pacific SST anomalies. The overestimation in 2 the North Indian Ocean is likely to be due to an over prediction in the intensity of monsoon depressions, which are then classified as intense tropical storms. Nevertheless, overall results are encouraging and will further contribute to increased confidence in simulating intense tropical storms with high-resolution climate models
ENSO impact on midlatitude circulation patterns in future climate change projections
The remote influence of the leading mode of interannual variability in the Tropics, the El Niño/Southern Oscillation (ENSO), on the northern hemispheric midlatitude circulation in future climate is investigated. For this, IPCC SRES scenarios of the latest version of the coupled climate model ECHAM5/MPI-OM are used. In ensembles of future climate change projections it is found, that a changing state of ENSO with increased variability has a pronounced influence on the dominant midlatitude circulation pattern, namely the Pacific North America (PNA) pattern and the North Atlantic Oscillation (NAO). More explicitly, in the 21st and 22nd century, a positive (negative) phase of ENSO is more likely followed by a positive (negative) PNA index and negative (positive) NAO index than it is observed in the 20th century. Correlation coefficients between the winter mean Niño3.4 index and the NAO index increase substantially from the 20th centur
- …
