355 research outputs found

    Attractor Flows from Defect Lines

    Full text link
    Deforming a two dimensional conformal field theory on one side of a trivial defect line gives rise to a defect separating the original theory from its deformation. The Casimir force between these defects and other defect lines or boundaries is used to construct flows on bulk moduli spaces of CFTs. It turns out, that these flows are constant reparametrizations of gradient flows of the g-functions of the chosen defect or boundary condition. The special flows associated to supersymmetric boundary conditions in N=(2,2) superconformal field theories agree with the attractor flows studied in the context of black holes in N=2 supergravity.Comment: 28 page

    Descent of Equivalences and Character Bijections

    Get PDF
    Categorical equivalences between block algebras of finite groups—such as Morita and derived equivalences—are well known to induce character bijections which commute with the Galois groups of field extensions. This is the motivation for attempting to realise known Morita and derived equivalences over non-splitting fields. This article presents various results on the theme of descent to appropriate subfields and subrings. We start with the observation that perfect isometries induced by a virtual Morita equivalence induce isomorphisms of centres in non-split situations and explain connections with Navarro’s generalisation of the Alperin–McKay conjecture. We show that Rouquier’s splendid Rickard complex for blocks with cyclic defect groups descends to the non-split case. We also prove a descent theorem for Morita equivalences with endopermutation source

    Defect Perturbations in Landau-Ginzburg Models

    Full text link
    Perturbations of B-type defects in Landau-Ginzburg models are considered. In particular, the effect of perturbations of defects on their fusion is analyzed in the framework of matrix factorizations. As an application, it is discussed how fusion with perturbed defects induces perturbations on boundary conditions. It is shown that in some classes of models all boundary perturbations can be obtained in this way. Moreover, a universal class of perturbed defects is constructed, whose fusion under certain conditions obey braid relations. The functors obtained by fusing these defects with boundary conditions are twist functors as introduced in the work of Seidel and Thomas.Comment: 46 page

    The limit of N=(2,2) superconformal minimal models

    Full text link
    The limit of families of two-dimensional conformal field theories has recently attracted attention in the context of AdS/CFT dualities. In our work we analyse the limit of N=(2,2) superconformal minimal models when the central charge approaches c=3. The limiting theory is a non-rational N=(2,2) superconformal theory, in which there is a continuum of chiral primary fields. We determine the spectrum of the theory, the three-point functions on the sphere, and the disc one-point functions.Comment: 37 pages, 3 figures; v2: minor corrections in section 5.3, version to be published in JHE

    Integrability of the N=2 boundary sine-Gordon model

    Full text link
    We construct a boundary Lagrangian for the N=2 supersymmetric sine-Gordon model which preserves (B-type) supersymmetry and integrability to all orders in the bulk coupling constant g. The supersymmetry constraint is expressed in terms of matrix factorisations.Comment: LaTeX, 19 pages, no figures; v2: title changed, minor improvements, refs added, to appear in J. Phys. A: Math. Ge

    Limits of minimal models and continuous orbifolds

    Get PDF
    The lambda=0 't Hooft limit of the 2d W_N minimal models is shown to be equivalent to the singlet sector of a free boson theory, thus paralleling exactly the structure of the free theory in the Klebanov-Polyakov proposal. In 2d, the singlet sector does not describe a consistent theory by itself since the corresponding partition function is not modular invariant. However, it can be interpreted as the untwisted sector of a continuous orbifold, and this point of view suggests that it can be made consistent by adding in the appropriate twisted sectors. We show that these twisted sectors account for the `light states' that were not included in the original 't Hooft limit. We also show that, for the Virasoro minimal models (N=2), the twisted sector of our orbifold agrees precisely with the limit theory of Runkel & Watts. In particular, this implies that our construction satisfies crossing symmetry.Comment: 33 pages; v2: minor improvements and references added, published versio

    B-type defects in Landau-Ginzburg models

    Full text link
    We consider Landau-Ginzburg models with possibly different superpotentials glued together along one-dimensional defect lines. Defects preserving B-type supersymmetry can be represented by matrix factorisations of the difference of the superpotentials. The composition of these defects and their action on B-type boundary conditions is described in this framework. The cases of Landau-Ginzburg models with superpotential W=X^d and W=X^d+Z^2 are analysed in detail, and the results are compared to the CFT treatment of defects in N=2 superconformal minimal models to which these Landau-Ginzburg models flow in the IR.Comment: 50 pages, 2 figure

    The geometry of the limit of N=2 minimal models

    Full text link
    We consider the limit of two-dimensional N=(2,2) superconformal minimal models when the central charge approaches c=3. Starting from a geometric description as non-linear sigma models, we show that one can obtain two different limit theories. One is the free theory of two bosons and two fermions, the other one is a continuous orbifold thereof. We substantiate this claim by detailed conformal field theory computations.Comment: 35 pages, 3 figures; v2 minor corrections, version to be published in J. Phys.

    Current-Current Deformations of Conformal Field Theories, and WZW Models

    Full text link
    Moduli spaces of conformal field theories corresponding to current-current deformations are discussed. For WZW models, CFT and sigma model considerations are compared. It is shown that current-current deformed WZW models have WZW-like sigma model descriptions with non-bi-invariant metrics, additional B-fields and a non-trivial dilaton.Comment: 30 pages, latex, v2: remarks and references adde

    Torsion Units for a Ree group, Tits group and a Steinberg triality group

    Get PDF
    We investigate the Zassenhaus conjecture for the Steinberg triality group 3D4(23){}^3D_4(2^3), Tits group 2F4(2){}^2F_4(2)' and the Ree group 2F4(2){}^2F_4(2). Consequently, we prove that the Prime Graph question is true for all three groups
    corecore