1,107 research outputs found
Phase-slip flux qubits
In thin superconducting wires, phase-slip by thermal activation near the
critical temperature is a well-known effect. It has recently become clear that
phase-slip by quantum tunnelling through the energy barrier can also have a
significant rate at low temperatures. In this paper it is suggested that
quantum phase-slip can be used to realize a superconducting quantum bit without
Josephson junctions. A loop containing a nanofabricated very thin wire is
biased with an externally applied magnetic flux of half a flux quantum,
resulting in two states with opposite circulating current and equal energy.
Quantum phase-slip should provide coherent coupling between these two
macroscopic states. Numbers are given for a wire of amorphous niobium-silicon
that can be fabricated with advanced electron beam lithography.Comment: Submitted to New Journal of Physics, special issue solid state
quantum informatio
Una clasificación de proyectos de restauración del paisaje forestal en América Latina y el Caribe
Governed by history: Institutional analysis of a contested biofuel innovation system in Tanzania
Initially hailed as a miracle crop for biofuel production, Jatropha has recently attracted criticism for competing with food production, causing adverse biodiversity impacts, and jeopardizing land access by rural populations in tropical countries. This paper analyzes the contested development of Jatropha biofuel sector in Tanzania by anchoring two new concepts of ‘organizational models’ and ‘institutional arrangements’ to the sectoral systems of innovation perspective. The notion of ‘organizational models’ brings into relief the heterogeneity of actors in an innovation system and the ways in which the actors form networks, within and across national borders, to organize innovative activities. The concept of ‘institutional arrangements’ refers to the ensemble of formal and informal institutions assembled during Tanzania’s colonial and post-colonial eras, which directly govern innovative activities in specific organizational models. Based on a location-specific and historically-grounded institutional analysis within the innovation system framework, implications are drawn for the future development of Tanzania’s Jatropha sector including its links with European markets and for the regulation of ‘next-generation’ biofuels
Relativistically rotating dust
Dust configurations play an important role in astrophysics and are the
simplest models for rotating bodies. The physical properties of the
general--relativistic global solution for the rigidly rotating disk of dust,
which has been found recently as the solution of a boundary value problem, are
discussed.Comment: 18 pages, 11 figure
Independent data for transparent monitoring of greenhouse gas emissions from the land use sector – What do stakeholders think and need?
The agriculture, forestry and other land use (AFOLU) sectors contribute substantially to the net global anthropogenic greenhouse gas (GHG) emissions. To reduce these emissions under the Paris Agreement, effective mitigation actions are needed that require engagement of multiple stakeholders. Emission reduction also requires that accurate, consistent and comparable datasets are available for transparent reference and progress monitoring. Availability of free and open datasets and portals (referred to as independent data) increases, offering opportunities for improving and reconciling estimates of GHG emissions and mitigation options. Through an online survey, we investigated stakeholders’ data needs for estimating forest area and change, forest biomass and emission factors, and AFOLU GHG emissions. The survey was completed by 359 respondents from governmental, intergovernmental and non-governmental organizations, research institutes and universities, and public and private companies. These can be grouped into data users and data providers. Our results show that current open and freely available datasets and portals are only able to fulfil stakeholder needs to a certain degree. Users require a) detailed documentation regarding the scope and usability of the data, b) comparability between alternative data sources, c) uncertainty estimates for evaluating mitigation options, d) more region-specific and detailed data with higher accuracy for sub-national application, e) regular updates and continuity for establishing consistent time series. These requirements are found to be key elements for increasing overall transparency of data sources, definitions, methodologies and assumptions, which is required under the Paris Agreement. Raising awareness and improving data availability through centralized platforms are important for increasing engagement of data users. In countries with low capacities, independent data can support countries’ mitigation planning and implementation, and related GHG reporting. However, there is a strong need for further guidance and capacity development (i.e. ‘readiness support’) on how to make proper use of independent datasets. Continued investments will be needed to sustain programmes and keep improving datasets to serve the objectives of the many stakeholders involved in climate change mitigation and should focus on increased accessibility and transparency of data to encourage stakeholder involvement
Critical temperature oscillations in magnetically coupled superconducting mesoscopic loops
We study the magnetic interaction between two superconducting concentric
mesoscopic Al loops, close to the superconducting/normal phase transition. The
phase boundary is measured resistively for the two-loop structure as well as
for a reference single loop. In both systems Little-Parks oscillations,
periodic in field are observed in the critical temperature Tc versus applied
magnetic field H. In the Fourier spectrum of the Tc(H) oscillations, a weak
'low frequency' response shows up, which can be attributed to the inner loop
supercurrent magnetic coupling to the flux of the outer loop. The amplitude of
this effect can be tuned by varying the applied transport current.Comment: 9 pages, 7 figures, accepted for publication in Phys. Rev.
The androgen receptor: Functional structure and expression in transplanted human prostate tumors and prostate tumor cell lines
Abstract
The growth of the majority of prostate tumors is androgen-dependent, for which the presence of a functional androgen receptor is a prerequisite. Tumor growth can be inhibited by blockade of androgen receptor action. However, this inhibition is transient. To study the role of the androgen receptor in androgen-dependent and androgen-independent prostate tumor cell growth, androgen receptor mRNA expression was monitored in six different human prostate tumor cell lines and tumors, which were grown either in vitro or by transplantation on (male) nude mice. Androgen receptor mRNA was clearly detectable in three androgen-dependent (sensitive) tumors and absent or low in three androgen-independent tumors. Growth of the LNCaP prostate tumor cell line can be stimulated both by androgens and by fetal calf serum. In the former situation androgen receptor mRNA expression is downregulated, whereas in the latter no effect on androgen receptor mRNA levels can be demonstrated. Sequence analysis showed that the androgen receptor gene from LNCaP cells contains a point mutation in the region encoding the steroid-binding domain, which confers an ACT coVon encoding a threonine residue to GCT, encoding alanine
Possible origins of macroscopic left-right asymmetry in organisms
I consider the microscopic mechanisms by which a particular left-right (L/R)
asymmetry is generated at the organism level from the microscopic handedness of
cytoskeletal molecules. In light of a fundamental symmetry principle, the
typical pattern-formation mechanisms of diffusion plus regulation cannot
implement the "right-hand rule"; at the microscopic level, the cell's
cytoskeleton of chiral filaments seems always to be involved, usually in
collective states driven by polymerization forces or molecular motors. It seems
particularly easy for handedness to emerge in a shear or rotation in the
background of an effectively two-dimensional system, such as the cell membrane
or a layer of cells, as this requires no pre-existing axis apart from the layer
normal. I detail a scenario involving actin/myosin layers in snails and in C.
elegans, and also one about the microtubule layer in plant cells. I also survey
the other examples that I am aware of, such as the emergence of handedness such
as the emergence of handedness in neurons, in eukaryote cell motility, and in
non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue.
Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in
Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec
Optimizing training adaptations by manipulating glycogen
For decades, glycogen has been recognized as a storage form of glucose within the liver and muscles. Only recently has a greater role for glycogen as a regulator of metabolic signalling been suggested. Glycogen either directly or indirectly regulates a number of signalling proteins, including the adenosine-5\u27-phosphate- (AMP-) activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (MAPK). AMPK and p38 MAPK play a significant role in controlling the expression and activity of the peroxisome proliferator activated receptor γ coactivators (PGCs), respectively. The PGCs can directly increase muscle mitochondrial mass and endurance exercise performance. As low muscle glycogen is generally associated with greater activation of these pathways, the concept of training with low glycogen to maximize the physiological adaptations to endurance exercise is gaining acceptance in the scientific community. In this review, we evaluate the scientific basis for this philosophy and propose some practical applications of this philosophy for the general population as well as elite endurance athletes.<br /
Depairing currents in the superconductor/ferromagnet proximity system Nb/Fe
We have investigated the behaviour of the depairing current J_{dp} in
ferromagnet/superconductor/ferromagnet (F/S/F) trilayers as function of the
thickness d_s of the superconducting layers. Theoretically, J_{dp} depends on
the superconducting order parameter or the pair density function, which is not
homogeneous across the film due to the proximity effect. We use a proximity
effect model with two parameters (proximity strength and interface
transparency), which can also describe the dependence of the superconducting
transition temperature T_c on d_s. We compare the computations with the
experimentally determined zero-field critical current J_{c0} of small strips
(typically 5~ \mu m wide) of Fe/Nb/Fe trilayers with varying thickness d_{Nb}
of the Nb layer. Near T_c the temperature dependence J_{c0}(T) is in good
agreement with the expected behaviour, which allows extrapolation to T = 0.
Both the absolute values of J_{c0}(0) and the dependence on d_{Nb} agree with
the expectations for the depairing current. We conclude that J_{dp} is
correctly determined, notwithstanding the fact that the strip width is larger
than both the superconducting penetration depth and the superconducting
coherence length, and that J_{dp}(d_s) is correctly described by the model.Comment: 10 pages, 5 figures, submitted to PR
- …
