975 research outputs found

    Congestion behavior and tolls in a bottleneck model with stochastic capacity

    Get PDF
    In this paper we investigate a bottleneck model in which the capacity of the bottleneck is assumed stochastic and follows a uniform distribution. The commuters’ departure time choice is assumed to follow the user equilibrium principle according to mean trip cost. The analytical solution of the proposed model is derived. Both the analytical and numerical results show that the capacity variability would indeed change the commuters’ travel behavior by increasing the mean trip cost and lengthening the peak period. We then design congestion pricing schemes within the framework of the new stochastic bottleneck model, for both a time-varying toll and a single-step coarse toll, and prove that the proposed piecewise time-varying toll can effectively cut down, and even eliminate, the queues behind the bottleneck. We also find that the single-step coarse toll could either advance or postpone the earliest departure time. Furthermore, the numerical results show that the proposed pricing schemes can indeed improve the efficiency of the stochastic bottleneck through decreasing the system’s total travel cost

    Microsimulation models incorporating both demand and supply dynamics

    Get PDF
    There has been rapid growth in interest in real-time transport strategies over the last decade, ranging from automated highway systems and responsive traffic signal control to incident management and driver information systems. The complexity of these strategies, in terms of the spatial and temporal interactions within the transport system, has led to a parallel growth in the application of traffic microsimulation models for the evaluation and design of such measures, as a remedy to the limitations faced by conventional static, macroscopic approaches. However, while this naturally addresses the immediate impacts of the measure, a difficulty that remains is the question of how the secondary impacts, specifically the effect on route and departure time choice of subsequent trips, may be handled in a consistent manner within a microsimulation framework. The paper describes a modelling approach to road network traffic, in which the emphasis is on the integrated microsimulation of individual trip-makers’ decisions and individual vehicle movements across the network. To achieve this it represents directly individual drivers’ choices and experiences as they evolve from day-to-day, combined with a detailed within-day traffic simulation model of the space–time trajectories of individual vehicles according to car-following and lane-changing rules and intersection regulations. It therefore models both day-to-day and within-day variability in both demand and supply conditions, and so, we believe, is particularly suited for the realistic modelling of real-time strategies such as those listed above. The full model specification is given, along with details of its algorithmic implementation. A number of representative numerical applications are presented, including: sensitivity studies of the impact of day-to-day variability; an application to the evaluation of alternative signal control policies; and the evaluation of the introduction of bus-only lanes in a sub-network of Leeds. Our experience demonstrates that this modelling framework is computationally feasible as a method for providing a fully internally consistent, microscopic, dynamic assignment, incorporating both within- and between-day demand and supply dynamic

    Dynamic Three-dimensional Simulation of Surface Charging on Rotating Asteroids

    Full text link
    Surface charging phenomenon of asteroids, mainly resulting from solar wind plasma and solar radiation, has been studied extensively. However, the influence of asteroid's rotation on surface charging has yet to be fully understood. Here neural network is established to replace numerical integration, improving the efficiency of dynamic three-dimensional simulation. We implement simulation of rotating asteroids and surrounding plasma environment under different conditions, including quiet solar wind and solar storms, various minerals on asteroid's surface also be considered. For asteroids with rotation periods comparable to orbital period, effect of orbital motion and obliquity also be studied. Results show that under typical solar wind, the maximum and minimum potential of asteroids will gradually decrease with their increasing periods, especially when solar wind is obliquely incident. For asteroid has period longer than one week, this decreasing trend will become extremely slow. During solar storm passing, solar wind plasma changes sharply, the susceptibility of asteroid's surface potential to rotation is greatly pronounced. Minerals on surface also count, plagioclase is the most sensitive mineral among those we explored, while ilmenite seems indifferent to changes in rotation periods. Understanding the surface charging of asteroid under various rotation periods or angles, is crucial for further research into solar wind plasma and asteroid's surface dust motion, providing a reference for safe landing exploration of asteroids

    An agent-based approach to assess drivers’ interaction with pre-trip information systems.

    Get PDF
    This article reports on the practical use of a multi-agent microsimulation framework to address the issue of assessing drivers’ responses to pretrip information systems. The population of drivers is represented as a community of autonomous agents, and travel demand results from the decision-making deliberation performed by each individual of the population as regards route and departure time. A simple simulation scenario was devised, where pretrip information was made available to users on an individual basis so that its effects at the aggregate level could be observed. The simulation results show that the overall performance of the system is very likely affected by exogenous information, and these results are ascribed to demand formation and network topology. The expressiveness offered by cognitive approaches based on predicate logics, such as the one used in this research, appears to be a promising approximation to fostering more complex behavior modelling, allowing us to represent many of the mental aspects involved in the deliberation process

    The Global Expansion Strategies of Chinese IT Companies: The Case of Lenovo

    Get PDF
    This study explores Chinese IT firms' internationalisation processes and strategies based on a case study of Lenovo internationalisation process and recent acquisition of IBM PCD. Through a review of existing theories of internationalisation, combined with a broad secondary research, and based on a understanding of the nature of IT industry and the characteristics of Chinese IT firms, this dissertation identifies the major challenges that Chinese firms like Lenovo who is undertaking global expansion strategy may face and gives some recommendations for Chinese companies pursuing a global strategy. First, this study advocates that it is not necessary for Chinese firms to follow sequential and incremental process for their internationalisation on which traditional theories (e.g. stages theory) emphases. As what Lenovo has done, a 'jump strategy' may greatly accelerate the process of becoming real multinationals even though it may be very risky and challenging. Second, an appropriate foreign market entry mode should also be based on a comprehensive analysis of the firm's core competence which generates sustainable competitive advantages. The third recommendation points out the importance of improving brand recognition and reputations in global market. Finally, Chinese MNCs should constantly focus on developing existing capability of R&D which is the main weakness of Chinese companies

    Near-Optimal Resilient Aggregation Rules for Distributed Learning Using 1-Center and 1-Mean Clustering with Outliers

    Full text link
    Byzantine machine learning has garnered considerable attention in light of the unpredictable faults that can occur in large-scale distributed learning systems. The key to secure resilience against Byzantine machines in distributed learning is resilient aggregation mechanisms. Although abundant resilient aggregation rules have been proposed, they are designed in ad-hoc manners, imposing extra barriers on comparing, analyzing, and improving the rules across performance criteria. This paper studies near-optimal aggregation rules using clustering in the presence of outliers. Our outlier-robust clustering approach utilizes geometric properties of the update vectors provided by workers. Our analysis show that constant approximations to the 1-center and 1-mean clustering problems with outliers provide near-optimal resilient aggregators for metric-based criteria, which have been proven to be crucial in the homogeneous and heterogeneous cases respectively. In addition, we discuss two contradicting types of attacks under which no single aggregation rule is guaranteed to improve upon the naive average. Based on the discussion, we propose a two-phase resilient aggregation framework. We run experiments for image classification using a non-convex loss function. The proposed algorithms outperform previously known aggregation rules by a large margin with both homogeneous and heterogeneous data distributions among non-faulty workers. Code and appendix are available at https://github.com/jerry907/AAAI24-RASHB.Comment: 17 pages, 4 figures. Accepted by the 38th Annual AAAI Conference on Artificial Intelligence (AAAI'24

    Bus bunching along a corridor served by two lines

    Get PDF
    Headway fluctuations and “bus bunching” are well known phenomena on many bus routes where an initial delay to one service can disturb the whole schedule due to resulting differences in dwell times of subsequent buses at stops. This paper deals with the influence of a frequent but so far largely neglected characteristic of bus networks on bus bunching, that is the presence of overtaking and common lines. A set of discrete state equations is implemented to obtain the departure times of a group of buses following the occurrence of an exogenous delay to one bus at a bus stop. Two models are distinguished depending on whether overtaking at stops is possible or not. If two buses board simultaneously and overtaking is not possible, passengers will board the front bus. If overtaking is possible, passengers form equilibrium queues in order to minimise their waiting times. Conditions for equilibrium queues among passengers with different choice sets are formulated. With a case study we then illustrate that, if overtaking is not allowed, the presence of common lines worsens the service regularity along the corridor. Conversely, common lines have positive effects when overtaking is possible. We suggest hence that appropriate network design is important to reduce the negative effects of delay-prone lines on the overall network performance

    Meta-Reinforcement Learning for Timely and Energy-efficient Data Collection in Solar-powered UAV-assisted IoT Networks

    Full text link
    Unmanned aerial vehicles (UAVs) have the potential to greatly aid Internet of Things (IoT) networks in mission-critical data collection, thanks to their flexibility and cost-effectiveness. However, challenges arise due to the UAV's limited onboard energy and the unpredictable status updates from sensor nodes (SNs), which impact the freshness of collected data. In this paper, we investigate the energy-efficient and timely data collection in IoT networks through the use of a solar-powered UAV. Each SN generates status updates at stochastic intervals, while the UAV collects and subsequently transmits these status updates to a central data center. Furthermore, the UAV harnesses solar energy from the environment to maintain its energy level above a predetermined threshold. To minimize both the average age of information (AoI) for SNs and the energy consumption of the UAV, we jointly optimize the UAV trajectory, SN scheduling, and offloading strategy. Then, we formulate this problem as a Markov decision process (MDP) and propose a meta-reinforcement learning algorithm to enhance the generalization capability. Specifically, the compound-action deep reinforcement learning (CADRL) algorithm is proposed to handle the discrete decisions related to SN scheduling and the UAV's offloading policy, as well as the continuous control of UAV flight. Moreover, we incorporate meta-learning into CADRL to improve the adaptability of the learned policy to new tasks. To validate the effectiveness of our proposed algorithms, we conduct extensive simulations and demonstrate their superiority over other baseline algorithms

    Designing robust schedule coordination scheme for transit networks with safety control margins

    Get PDF
    We propose a robust schedule coordination scheme which combines timetable planning with a semi-flexible departure delayed control strategy in case of disruptions. The flexibility is provided by allowing holding for the late incoming bus within a safety control margin (SCM). In this way, the stochastic travel time is addressed by the integration of real-time control and slacks at the planning phase. The schedule coordination problem then jointly optimises the planning headways and slack times in the timetable subject to SCM. Analytical formulations of cost functions are derived for three types of operating modes: uncoordinated operation, departure punctual control and departure delayed control. The problem is formulated as a stochastic mixed integer programming model and solved by a branch-and-bound algorithm. Numerical results provide an insight into the interaction between SCM and slack times, and demonstrate that the proposed model leads to cost saving and higher efficiency when SCM is considered. Compared to the conventional operating modes, the proposed method also presents advantages in transfer reliability and robustness to delay and demand variation
    corecore