60 research outputs found
Stable isotope (δ18O and δ13C) sclerochronology of Callovian (Middle Jurassic) bivalves (Gryphaea (Bilobissa) dilobotes) and belemnites (Cylindroteuthis puzosiana) from the Peterborough Member of the Oxford Clay Formation (Cambridgeshire, England): Evidence of palaeoclimate, water depth and belemnite behaviour
Incremental δ18O and δ13C signals were obtained from three well-preserved specimens of Cylindroteuthis puzosiana and from three well-preserved specimens of Gryphaea (Bilobissa) dilobotes from the Peterborough Member of the Oxford Clay Formation (Cambridgeshire, England). Through-ontogeny (sclerochronological) δ18O data from G. (B.) dilobotes appear to faithfully record seasonal temperature variations in benthic Callovian waters of the study area, which range from c. 14 °C to c. 17 °C (arithmetic mean temperature c. 15 °C). Water depth is estimated to have been in the region of c. 50 m, based upon comparisons between these data, previously published non-incremental sea surface δ18O values, and a modern analogue situation. Productivity in Callovian waters was comparable with that in modern seas, based upon δ13C data from G. (B.)dilobotes, with 13C depletion occurring during warmer periods, possibly related to an interaction between plankton blooms and intra-annual variations in mixing across a thermocline. Incremental δ18O data from C.puzosiana provide temperature minima of c.11 °C for all specimens but with maxima varying between c.14 °C and c.16 °C for different individuals (arithmetic mean values c. 13 °C). Temperatures for late ontogeny, when the C. puzosiana individuals must have been living close to the study site and hence the analysed specimens of G. (B.) dilobotes, are closely comparable to those indicated by the latter. However, for significant portions of ontogeny C. puzosiana experienced temperatures between c. 2 °C and c. 3 °C cooler than the winter minimum as recorded by co-occurring G. (B.) dilobotes. Comparisons with modern seas suggest that descent to a depth of c. 1000 m would be necessary to explain such cool minimum temperatures. This can be discounted due to the lack of deep waters locally and due to estimates of the depth tolerance of belemnites. The most likely cause of cool δ18O signals from C. puzosiana is a cosmopolitan lifestyle including migration to more northerly latitudes. Mean δ13C values from C. puzosiana are comparable with those from G.(B.)dilobotes. However, the incrementally acquired data are highly variable and probably influenced by metabolic effects.The probable identification of migratory behaviour in C. puzosiana calls into question the reliability of some belemnite species as place-specific palaeoenvironmental archives and highlights the benefits of adopting a sclerochronological approach
Characterization of condensed tannins from native legumes of the Brazilian northeastern semi-arid
Search for the Chiral Magnetic Effect in Au+Au collisions at GeV with the STAR forward Event Plane Detectors
A decisive experimental test of the Chiral Magnetic Effect (CME) is
considered one of the major scientific goals at the Relativistic Heavy-Ion
Collider (RHIC) towards understanding the nontrivial topological fluctuations
of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is
expected to result in a charge separation phenomenon across the reaction plane,
whose strength could be strongly energy dependent. The previous CME searches
have been focused on top RHIC energy collisions. In this Letter, we present a
low energy search for the CME in Au+Au collisions at
GeV. We measure elliptic flow scaled charge-dependent correlators relative to
the event planes that are defined at both mid-rapidity and at
forward rapidity . We compare the results based on the
directed flow plane () at forward rapidity and the elliptic flow plane
() at both central and forward rapidity. The CME scenario is expected
to result in a larger correlation relative to than to , while
a flow driven background scenario would lead to a consistent result for both
event planes[1,2]. In 10-50\% centrality, results using three different event
planes are found to be consistent within experimental uncertainties, suggesting
a flow driven background scenario dominating the measurement. We obtain an
upper limit on the deviation from a flow driven background scenario at the 95\%
confidence level. This work opens up a possible road map towards future CME
search with the high statistics data from the RHIC Beam Energy Scan Phase-II.Comment: main: 8 pages, 5 figures; supplementary material: 2 pages, 1 figur
Study of the lineshape of the chi(c1) (3872) state
A study of the lineshape of the chi(c1) (3872) state is made using a data sample corresponding to an integrated luminosity of 3 fb(-1) collected in pp collisions at center-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate chi(c1)(3872) and psi(2S) mesons from b-hadron decays are selected in the J/psi pi(+)pi(-) decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the chi(c1 )(3872) and psi(2S) states, Delta m, and the width of the chi(c1 )(3872) state, Gamma(Bw), are determined to be (Delta m=185.598 +/- 0.067 +/- 0.068 Mev,)(Gamma BW=1.39 +/- 0.24 +/- 0.10 Mev,) where the first uncertainty is statistical and the second systematic. Using a Flatte-inspired model, the mode and full width at half maximum of the lineshape are determined to be (mode=3871.69+0.00+0.05 MeV.)(FWHM=0.22-0.04+0.13+0.07+0.11-0.06-0.13 MeV, ) An investigation of the analytic structure of the Flatte amplitude reveals a pole structure, which is compatible with a quasibound D-0(D) over bar*(0) state but a quasivirtual state is still allowed at the level of 2 standard deviations
Measurement of the CKM angle in and decays with
A measurement of -violating observables is performed using the decays
and , where the meson is
reconstructed in one of the self-conjugate three-body final states and (commonly denoted ). The decays are analysed in bins of the -decay phase space, leading
to a measurement that is independent of the modelling of the -decay
amplitude. The observables are interpreted in terms of the CKM angle .
Using a data sample corresponding to an integrated luminosity of
collected in proton-proton collisions at centre-of-mass
energies of , , and with the LHCb experiment,
is measured to be . The hadronic
parameters , , , and ,
which are the ratios and strong-phase differences of the suppressed and
favoured decays, are also reported
Asymptomatic Kidney Tumors in Elderly Patients: Review of Treatment Approaches in Russia and Western Countries
Distinctive features of the Gac‐Rsm
Productive plant–bacteria interactions, either beneficial or pathogenic, require that bacteria successfully sense, integrate and respond to continuously changing environmental and plant stimuli. They use complex signal transduction systems that control a vast array of genes and functions. The Gac-Rsm global regulatory pathway plays a key role in controlling fundamental aspects of the apparently different lifestyles of plant beneficial and phytopathogenic Pseudomonas as it coordinates adaptation and survival while either promoting plant health (biocontrol strains) or causing disease (pathogenic strains). Plant-interacting Pseudomonas stand out for possessing multiple Rsm proteins and Rsm RNAs, but the physiological significance of this redundancy is not yet clear. Strikingly, the components of the Gac-Rsm pathway and the controlled genes/pathways are similar, but the outcome of its regulation may be opposite. Therefore, identifying the target mRNAs bound by the Rsm proteins and their mode of action (repression or activation) is essential to explain the resulting phenotype. Some technical considerations to approach the study of this system are also given. Overall, several important features of the Gac-Rsm cascade are now understood in molecular detail, particularly in Pseudomonas protegens CHA0, but further questions remain to be solved in other plant-interacting Pseudomonas.This research was supported by grants BIO2014-55075-P and BIO2017-83533-P from the ERDF/Spanish Ministry of Science, Innovation and Universities - State Research Agency. M.D.F. was supported by a FPU contract from the Spanish MECD/MEFP (ECD/1619/2013)
Electric-charge-dependent directed flow splitting of produced quarks in Au+Au collisions
We report directed flow (v1) of multistrange baryons (Ξ and Ω) and improved v1 data for K−, p¯, Λ¯ and ϕ in Au+Au collisions at sNN=27 and 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). We focus on particles whose constituent quarks are not transported from the incoming nuclei but instead are produced in the collisions. At intermediate impact parameters, we examine quark coalescence behavior for particle combinations with identical quark content, and search for any departure from this behavior (“splitting”) for combinations having non-identical quark content. Under the assumption of quark coalescence for produced quarks, the splitting strength appears to increase with the electric charge difference of the constituent quarks in the combinations, consistent with electromagnetic effect expectations
- …
