9,016 research outputs found
Lindblad approach to spatio-temporal quantum dynamics of phonon-induced carrier capture processes
In view of the ultrashort spatial and temporal scales involved, carrier
capture processes in nanostructures are genuine quantum phenomena. To describe
such processes, methods with different levels of approximations have been
developed. By properly tailoring the Lindblad-based nonlinear single-particle
density matrix equation provided by an alternative Markov approach, in this
work we present a Lindblad superoperator to describe how the phonon-induced
carrier capture affects the spatio-temporal quantum dynamics of a flying wave
packet impinging on a quantum dot. We compare the results with non-Markovian
quantum kinetics calculations and discuss the advantages and drawbacks of the
two approaches.Comment: 15 pages, 10 figure
Chiral effective field theory predictions for muon capture on deuteron and 3He
The muon-capture reactions 2H(\mu^-,\nu_\mu)nn and 3He(\mu^-,\nu_\mu)3H are
studied with nuclear strong-interaction potentials and charge-changing weak
currents, derived in chiral effective field theory. The low-energy constants
(LEC's) c_D and c_E, present in the three-nucleon potential and (c_D)
axial-vector current, are constrained to reproduce the A=3 binding energies and
the triton Gamow-Teller matrix element. The vector weak current is related to
the isovector component of the electromagnetic current via the
conserved-vector-current constraint, and the two LEC's entering the contact
terms in the latter are constrained to reproduce the A=3 magnetic moments. The
muon capture rates on deuteron and 3He are predicted to be 399(3) sec^{-1} and
1494 (21) sec^{-1}, respectively, where the spread accounts for the cutoff
sensitivity as well as uncertainties in the LEC's and electroweak radiative
corrections. By comparing the calculated and precisely measured rates on 3He, a
value for the induced pseudoscalar form factor is obtained in good agreement
with the chiral perturbation theory prediction.Comment: 4 pages, 2 figures, revisited version accepted for publication on
Phys. Rev. Let
Electrodisintegration of He below and above deuteron breakup threshold
Recent advances in the study of electrodisintegration of 3He are presented
and discussed. The pair-correlated hyperspherical harmonics method is used to
calculate the initial and final state wave functions, with a realistic
Hamiltonian consisting of the Argonne v18 two-nucleon and Urbana IX
three-nucleon interactions. The model for the nuclear current and charge
operators retains one- and many-body contributions. Particular attention is
made in the construction of the two-body current operators arising from the
momentum-dependent part of the two-nucleon interaction. Three-body current
operators are also included so that the full current operator is strictly
conserved. The present model for the nuclear current operator is tested
comparing theoretical predictions and experimental data of pd radiative capture
cross section and spin observables.Comment: 5 pages, 5 figures, submitted to Eur. Phys. J.
Weak proton capture on 3He
The astrophysical S-factor for the proton weak capture on 3He is calculated
with correlated-hyperspherical-harmonics bound and continuum wave functions
corresponding to realistic Hamiltonians consisting of the Argonne v14 or
Argonne v18 two-nucleon and Urbana-VIII or Urbana-IX three-nucleon
interactions. The nuclear weak charge and current operators have vector and
axial-vector components, that include one- and many-body terms. All possible
multipole transitions connecting any of the p 3He S- and P-wave channels to the
4He bound state are considered. The S-factor at a p 3He center-of-mass energy
of 10 keV, close to the Gamow-peak energy, is predicted to be 10.1 10^{-20} keV
b with the AV18/UIX Hamiltonian, a factor of about 4.5 larger than the value
adopted in the standard solar model. The P-wave transitions are found to be
important, contributing about 40 % of the calculated S-factor. The energy
dependence is rather weak: the AV18/UIX zero-energy S-factor is 9.64 10^{-20}
keV b, only 5 % smaller than the 10 keV result quoted above. The model
dependence is also found to be weak: the zero-energy S-factor is calculated to
be 10.2 10^{-20} keV b with the older AV14/UVIII model, only 6 % larger than
the AV18/UIX result. Our best estimate for the S-factor at 10 keV is therefore
(10.1 \pm 0.6) 10^{-20} keV b, when the theoretical uncertainty due to the
model dependence is included. This value for the calculated S-factor is not as
large as determined in fits to the Super-Kamiokande data in which the hep flux
normalization is free. However, the precise calculation of the S-factor and the
consequent absolute prediction for the hep neutrino flux will allow much
greater discrimination among proposed solar neutrino oscillation solutions.Comment: 54 pages RevTex file, 6 PostScript figures, submitted to Phys. Rev.
Isospin mixing in the nucleon and 4He and the nucleon strange electric form factor
In order to isolate the contribution of the nucleon strange electric form
factor to the parity-violating asymmetry measured in 4He(\vec e,e')4He
experiments, it is crucial to have a reliable estimate of the magnitude of
isospin-symmetry-breaking (ISB) corrections in both the nucleon and 4He. We
examine this issue in the present letter. Isospin admixtures in the nucleon are
determined in chiral perturbation theory, while those in 4He are derived from
nuclear interactions, including explicit ISB terms. A careful analysis of the
model dependence in the resulting predictions for the nucleon and nuclear ISB
contributions to the asymmetry is carried out. We conclude that, at the low
momentum transfers of interest in recent measurements reported by the HAPPEX
collaboration at Jefferson Lab, these contributions are of comparable magnitude
to those associated with strangeness components in the nucleon electric form
factor.Comment: 4 pages, 2 figures, revtex
The Three-Nucleon System Near the N-d Threshold
The three-nucleon system is studied at energies a few hundred keV above the
N-d threshold. Measurements of the tensor analyzing powers and
for p-d elastic scattering at keV are presented
together with the corresponding theoretical predictions. The calculations are
extended to very low energies since they are useful for extracting the p-d
scattering lengths from the experimental data. The interaction considered here
is the Argonne V18 potential plus the Urbana three-nucleon potential. The
calculation of the asymptotic D- to S-state ratio for H and He, for
which recent experimental results are available, is also presented.Comment: Latex, 11 pages, 2 figures, to be published in Phy.Lett.
Electromagnetic transitions for A=3 nuclear systems
Recent advances in the study of pd radiative capture in a wide range of
center-of-mass energy below and above deuteron breakup threshold are presented
and discussed.Comment: Invited lead talk at the 19th European Conference on Few-Body
Problems in Physics, Groningen, The Netherlands, 8/23 - 8/27 2004, 5 pages, 4
figure
- …
