4,688 research outputs found

    Dual QED3 at "NF = 1/2" is an interacting CFT in the infrared

    Get PDF
    We study the fate of weakly coupled dual QED3 in the infrared, that is, a single two-component Dirac fermion coupled to an emergent U(1) gauge field, but without Chern-Simons term. This theory has recently been proposed as a dual description of 2D surfaces of certain topological insulators. Using the renormalization group, we find that the interplay of gauge fluctuations with generated interactions in the four-fermi sector stabilizes an interacting conformal field theory (CFT) with finite four-fermi coupling in the infrared. The emergence of this CFT is due to cancellations in the β\beta-function of the four-fermi coupling special to "NF = 1/2". We also quantify how a possible "strong" Dirac fermion duality between a free Dirac cone and dual QED3 would constrain the universal constants of the topological current correlator of the latter.Comment: 21 pages, 8 figures; v2 minor typos fixe

    Inhomogeneous phases in one-dimensional mass- and spin-imbalanced Fermi gases

    Get PDF
    We compute the phase diagram of strongly interacting fermions in one dimension at finite temperature, with mass and spin imbalance. By including the possibility of the existence of a spatially inhomogeneous ground state, we find regions where spatially varying superfluid phases are favored over homogeneous phases. We obtain estimates for critical values of the temperature, mass and spin imbalance, above which these phases disappear. Finally, we show that an intriguing relation exists between the general structure of the phase diagram and the binding energies of the underlying two-body bound-state problem.Comment: 5 pages, 3 figure

    Crystalline Ground States in Polyakov-loop extended Nambu--Jona-Lasinio Models

    Full text link
    Nambu--Jona-Lasinio-type models have been used extensively to study the dynamics of the theory of the strong interaction at finite temperature and quark chemical potential on a phenomenological level. In addition to these studies, which are often performed under the assumption that the ground state of the theory is homogeneous, searches for the existence of crystalline phases associated with inhomogeneous ground states have attracted a lot of interest in recent years. In this work, we study the Polyakov-loop extended Nambu--Jona-Lasinio model and find that the existence of a crystalline phase is stable against a variation of the parametrization of the underlying Polyakov loop potential. To this end, we adopt two prominent parametrizations. Moreover, we observe that the existence of a quarkyonic phase depends crucially on the parametrization, in particular in the regime of the phase diagram where inhomogeneous chiral condensation is favored.Comment: 7 pages, 3 figure

    Ocean Eddy Identification and Tracking using Neural Networks

    Full text link
    Global climate change plays an essential role in our daily life. Mesoscale ocean eddies have a significant impact on global warming, since they affect the ocean dynamics, the energy as well as the mass transports of ocean circulation. From satellite altimetry we can derive high-resolution, global maps containing ocean signals with dominating coherent eddy structures. The aim of this study is the development and evaluation of a deep-learning based approach for the analysis of eddies. In detail, we develop an eddy identification and tracking framework with two different approaches that are mainly based on feature learning with convolutional neural networks. Furthermore, state-of-the-art image processing tools and object tracking methods are used to support the eddy tracking. In contrast to previous methods, our framework is able to learn a representation of the data in which eddies can be detected and tracked in more objective and robust way. We show the detection and tracking results on sea level anomalies (SLA) data from the area of Australia and the East Australia current, and compare our two eddy detection and tracking approaches to identify the most robust and objective method.Comment: accepted for International Geoscience and Remote Sensing Symposium 201
    corecore