1,789 research outputs found

    Improved Power Decoding of One-Point Hermitian Codes

    Get PDF
    We propose a new partial decoding algorithm for one-point Hermitian codes that can decode up to the same number of errors as the Guruswami--Sudan decoder. Simulations suggest that it has a similar failure probability as the latter one. The algorithm is based on a recent generalization of the power decoding algorithm for Reed--Solomon codes and does not require an expensive root-finding step. In addition, it promises improvements for decoding interleaved Hermitian codes.Comment: 9 pages, submitted to the International Workshop on Coding and Cryptography (WCC) 201

    Structural Properties of Twisted Reed-Solomon Codes with Applications to Cryptography

    Full text link
    We present a generalisation of Twisted Reed-Solomon codes containing a new large class of MDS codes. We prove that the code class contains a large subfamily that is closed under duality. Furthermore, we study the Schur squares of the new codes and show that their dimension is often large. Using these structural properties, we single out a subfamily of the new codes which could be considered for code-based cryptography: These codes resist some existing structural attacks for Reed-Solomon-like codes, i.e. methods for retrieving the code parameters from an obfuscated generator matrix.Comment: 5 pages, accepted at: IEEE International Symposium on Information Theory 201

    Twisted Reed-Solomon Codes

    Get PDF
    We present a new general construction of MDS codes over a finite field Fq\mathbb{F}_q. We describe two explicit subclasses which contain new MDS codes of length at least q/2q/2 for all values of q11q \ge 11. Moreover, we show that most of the new codes are not equivalent to a Reed-Solomon code.Comment: 5 pages, accepted at IEEE International Symposium on Information Theory 201

    A Verifiable Language for Cryptographic Protocols

    Get PDF

    Two-Point Codes for the Generalized GK curve

    Get PDF
    We improve previously known lower bounds for the minimum distance of certain two-point AG codes constructed using a Generalized Giulietti-Korchmaros curve (GGK). Castellanos and Tizziotti recently described such bounds for two-point codes coming from the Giulietti-Korchmaros curve (GK). Our results completely cover and in many cases improve on their results, using different techniques, while also supporting any GGK curve. Our method builds on the order bound for AG codes: to enable this, we study certain Weierstrass semigroups. This allows an efficient algorithm for computing our improved bounds. We find several new improvements upon the MinT minimum distance tables.Comment: 13 page

    Decoding of Interleaved Reed-Solomon Codes Using Improved Power Decoding

    Get PDF
    We propose a new partial decoding algorithm for mm-interleaved Reed--Solomon (IRS) codes that can decode, with high probability, a random error of relative weight 1Rmm+11-R^{\frac{m}{m+1}} at all code rates RR, in time polynomial in the code length nn. For m>2m>2, this is an asymptotic improvement over the previous state-of-the-art for all rates, and the first improvement for R>1/3R>1/3 in the last 2020 years. The method combines collaborative decoding of IRS codes with power decoding up to the Johnson radius.Comment: 5 pages, accepted at IEEE International Symposium on Information Theory 201

    Further Generalisations of Twisted Gabidulin Codes

    Get PDF
    We present a new family of maximum rank distance (MRD) codes. The new class contains codes that are neither equivalent to a generalised Gabidulin nor to a twisted Gabidulin code, the only two known general constructions of linear MRD codes.Comment: 10 pages, accepted at the International Workshop on Coding and Cryptography (WCC) 201
    corecore