8,264 research outputs found
Test for Right-Handed Quark Decays
Gronau and Wakaizumi have proposed a model in which the dominant decays
are due to exchange of a new right-handed gauge boson. A test of this model via
the study of polarized baryons produced in is suggested.Comment: Presented by Jonathan L. Rosner at DPF 92 Meeting, Fermilab,
November, 1992. 3 pages, LaTeX file (Postscript figure available upon
request). Enrico Fermi Institute report EFI 92-6
Computer Program for the Calculation of Multicomponent Convective Diffusion Deposition Rates from Chemically Frozen Boundary Layer Theory
The computer program based on multicomponent chemically frozen boundary layer (CFBL) theory for calculating vapor and/or small particle deposition rates is documented. A specific application to perimter-averaged Na2SO4 deposition rate calculations on a cylindrical collector is demonstrated. The manual includes a typical program input and output for users
Interplay of atomic displacements in the quantum magnet (CuCl)LaNb2O7
We report on the crystal structure of the quantum magnet (CuCl)LaNb2O7 that
was controversially described with respect to its structural organization and
magnetic behavior. Using high-resolution synchrotron powder x-ray diffraction,
electron diffraction, transmission electron microscopy, and band structure
calculations, we solve the room-temperature structure of this compound
[alpha-(CuCl)LaNb2O7] and find two high-temperature polymorphs. The
gamma-(CuCl)LaNb2O7 phase, stable above 640K, is tetragonal with a(sub) = 3.889
A, c(sub) = 11.738 A, and the space group P4/mmm. In the gamma-(CuCl)LaNb2O7
structure, the Cu and Cl atoms are randomly displaced from the special
positions along the {100} directions. The beta-phase [a(sub) x 2a(sub) x
c(sub), space group Pbmm] and the alpha-phase [2a(sub) x 2a(sub) x c(sub),
space group Pbam] are stable between 640 K and 500 K and below 500 K,
respectively. The structural changes at 500 K and 640 K are identified as
order-disorder phase transitions. The displacement of the Cl atoms is frozen
upon the gamma --> beta transformation, while a cooperative tilting of the NbO6
octahedra in the alpha-phase further eliminates the disorder of the Cu atoms.
The low-temperature alpha-(CuCl)LaNb2O7 structure thus combines the two types
of the atomic displacements that interfere due to the bonding between the Cu
atoms and the apical oxygens of the NbO6 octahedra. The precise structural
information resolves the controversy between the previous computation-based
models and provides the long-sought input for understanding the magnetic
properties of (CuCl)LaNb2O7.Comment: 12 pages, 10 figures, 5 tables; crystallographic information (cif
files) include
The two-dimensional frustrated Heisenberg model on the orthorhombic lattice
We discuss new high-field magnetization data recently obtained by Tsirlin et
al. for layered vanadium phosphates in the framework of the square-lattice
model. Our predictions for the saturation fields compare exceptionally well to
the experimental findings, and the strong bending of the curves below
saturation agrees very well with the experimental field dependence. Furthermore
we discuss the remarkably good agreement of the frustrated Heisenberg model on
the square lattice in spite of the fact that the compounds described with this
model actually have a lower crystallographic symmetry. We present results from
our calculations on the thermodynamics of the model on the orthorhombic (i.e.,
rectangular) lattice, in particular the temperature dependence of the magnetic
susceptibility. This analysis also sheds light on the discussion of magnetic
frustration and anisotropy of a class of iron pnictide parent compounds, where
several alternative suggestions for the magnetic exchange models were proposed.Comment: 4 pages, 3 figures, accepted for publication in Journal of Physics:
Conference Serie
Comparative investigation of the coupled-tetrahedra quantum spin systems Cu2Te2O5X2, X=Cl, Br and Cu4Te5O12Cl4
We present a comparative study of the coupled-tetrahedra quantum spin systems
Cu2Te2O5X2, X=Cl, Br (Cu-2252(X)) and the newly synthesized Cu4Te5O12Cl4
(Cu-45124(Cl)) based on ab initio Density Functional Theory calculations. The
magnetic behavior of Cu-45124(Cl) with a phase transition to an ordered state
at a lower critical temperature T=13.6K than in Cu-2252(Cl) (T=18K) can
be well understood in terms of the modified interaction paths. We identify the
relevant structural changes between the two systems and discuss the
hypothetical behavior of the not yet synthesized Cu-45124(Br) with an ab initio
relaxed structure using Car-Parrinello Molecular Dynamics.Comment: 2 pages, 1 figure; submitted to Proceedings of M2S-HTSC VIII, Dresden
200
Determining the Quark Mixing Matrix From CP-Violating Asymmetries
If the Standard Model explanation of CP violation is correct, then
measurements of CP-violating asymmetries in meson decays can in principle
determine the entire quark mixing matrix.Comment: 8 pages (plain TeX), 1 figure (postscript file appended), DAPNIA/SPP
94-06, NSF-PT-94-2, UdeM-LPN-TH-94-18
Tensor charges of light baryons in the Infinite Momentum Frame
We have used the Chiral-Quark Soliton Model formulated in the Infinite
Momentum Frame to investigate the octet, decuplet and antidecuplet tensor
charges up to the 5Q level. Using flavor SU(3) symmetry we have obtained for
the proton and in fair agreement previous
model estimations. The 5Q allowed us to estimate also the strange contribution
to the proton tensor charge . All those values have been
obtained at the model scale Q^2=0.36 GeV^2.Comment: 16 pages, 5 figure
Specific heat of CaNaFeAs single crystals: unconventional s multi-band superconductivity with intermediate repulsive interband coupling and sizable attractive intraband couplings
We report a low-temperature specific heat study of high-quality single
crystals of the heavily hole doped superconductor
CaNaFeAs. This compound exhibits bulk
superconductivity with a transition temperature \,K, which is
evident from the magnetization, transport, and specific heat measurements. The
zero field data manifests a significant electronic specific heat in the normal
state with a Sommerfeld coefficient mJ/mol K. Using a
multi-band Eliashberg analysis, we demonstrate that the dependence of the zero
field specific heat in the superconducting state is well described by a
three-band model with an unconventional s pairing symmetry and gap
magnitudes of approximately 2.35, 7.48, and -7.50 meV. Our analysis
indicates a non-negligible attractive intraband coupling,which contributes
significantly to the relatively high value of . The Fermi surface averaged
repulsive and attractive coupling strengths are of comparable size and outside
the strong coupling limit frequently adopted for describing high- iron
pnictide superconductors. We further infer a total mass renormalization of the
order of five, including the effects of correlations and electron-boson
interactions.Comment: 8 Figures, Submitted to PR
- …
