5,862 research outputs found

    Technology, Structural Change and Manufacturing Employment

    Get PDF
    This paper presents a revised version of Roy Rothwell's contribution to the IIASA Task Force Meeting on "Innovation and Industrial Strategy" in June 1980. It shows the heavy impact of technical change on employment both from the side of processes and products. Discussing the economic mechanisms of long waves the author mentions "...The fact that Menschs' inventions are rather more spread over time than his bunches of innovations, certainly suggests that other factors play a part in forcing their commercialization." Those factors are the self-reinforcing pressures of capital accumulation, which result in higher capital intensity and lower profitability until capital investment peaks out and begins to decline. Roy Rothwell comes to some conclusions for the policy to be applied. In his opinion governments, via market economies, might help to accelerate the formation of new industries through the process of innovative procurement in the public sector

    Fabrication and mechanical properties of chitosan composite membrane containing hydroxyapatite particles

    Get PDF
    This paper described the development of chitosan composites containing precipitated hydroxyapatite particles for potential applications in orthopaedic surgery or waste water treatment. The synthetic process and morphology of hydroxyapatite were reported. The effects of hydroxyapatite content on the microstructure and mechanical properties of composites were investigated. It was found that the Young’s Modulus of the composites decreases with hydroxyapatite content while the failure strength and strain increase with the hydroxyapatite content

    Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Signaling in The Prefrontal Cortex Modulates Cued Fear Learning, But Not Spatial Working Memory, in Female Rats

    Get PDF
    A genetic polymorphism within the gene encoding the pituitary adenylate cyclase- activating polypeptide (PACAP) receptor type I (PAC1R) has recently been associated with hyper-reactivity to threat-related cues in women, but not men, with post-traumatic stress disorder (PTSD). PACAP is a highly conserved peptide, whose role in mediating adaptive physiological stress responses is well established. Far less is understood about the contribution of PACAP signaling in emotional learning and memory, particularly the encoding of fear to discrete cues. Moreover, a neurobiological substrate that may account for the observed link between PAC1R and PTSD in women, but not men, has yet to be identified. Sex differences in PACAP signaling during emotional learning could provide novel targets for the treatment of PTSD. Here we investigated the contribution of PAC1R signaling within the prefrontal cortex to the acquisition of cued fear in female and male rats. We used a variant of fear conditioning called trace fear conditioning, which requires sustained attention to fear cues and depends on working-memory like neuronal activity within the prefrontal cortex. We found that cued fear learning, but not spatial working memory, was impaired by administration of a PAC1R antagonist directly into the prelimbic area of the prefrontal cortex. This effect was specific to females. We also found that levels of mRNA for the PAC1R receptor in the prelimbic cortex were greater in females compared with males, and were highest during and immediately following the proestrus stage of the estrous cycle. Together, these results demonstrate a sex-specific role of PAC1R signaling in learning about threat-related cues

    Searching for "monogenic diabetes" in dogs using a candidate gene approach

    Get PDF
    BACKGROUND: Canine diabetes is a common endocrine disorder with an estimated breed-related prevalence ranging from 0.005% to 1.5% in pet dogs. Increased prevalence in some breeds suggests that diabetes in dogs is influenced by genetic factors and similarities between canine and human diabetes phenotypes suggest that the same genes might be associated with disease susceptibility in both species. Between 1-5% of human diabetes cases result from mutations in a single gene, including maturity onset diabetes of the adult (MODY) and neonatal diabetes mellitus (NDM). It is not clear whether monogenic forms of diabetes exist within some dog breeds. Identification of forms of canine monogenic diabetes could help to resolve the heterogeneity of the condition and lead to development of breed-specific genetic tests for diabetes susceptibility. RESULTS: Seventeen dog breeds were screened for single nucleotide polymorphisms (SNPs) in eighteen genes that have been associated with human MODY/NDM. Six SNP associations were found from five genes, with one gene (ZFP57) being associated in two different breeds. CONCLUSIONS: Some of the genes that have been associated with susceptibility to MODY and NDM in humans appear to also be associated with canine diabetes, although the limited number of associations identified in this study indicates canine diabetes is a heterogeneous condition and is most likely to be a polygenic trait in most dog breeds. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2052-6687-1-8) contains supplementary material, which is available to authorized users

    High coherence hybrid superconducting qubit

    Full text link
    We measure the coherence of a new superconducting qubit, the {\em low-impedance flux qubit}, finding T2T11.5μT_2^* \sim T_1 \sim 1.5\mus. It is a three-junction flux qubit, but the ratio of junction critical currents is chosen to make the qubit's potential have a single well form. The low impedance of its large shunting capacitance protects it from decoherence. This qubit has a moderate anharmonicity, whose sign is reversed compared with all other popular qubit designs. The qubit is capacitively coupled to a high-Q resonator in a λ/2\lambda/2 configuration, which permits the qubit's state to be read out dispersively

    A computational approach to fretting wear prediction at the head-stem taper junction of total hip replacements

    Get PDF
    Wear is one of the main reasons for failure of modular total hip replacements. Recent evidence suggests that fretting wear occurs at the taper junction which provides fixation between the prosthesis femoral head and stem components. The fine metallic wear debris that is released can lead to adverse soft-tissue reactions which can necessitate a revision surgery. The present study proposes a computational methodology utilising an energy wear law and a 3D finite element model to predict fretting wear at the taper junction. The method is novel in that it simulates the weakening of the initial taper ‘fixation’ (created at impaction of the head onto the stem in surgery) due to the wearing process. The taper fixation is modelled using a contact analysis with overlapped meshes at the taper junction. The reduction in fixation is modelled by progressive removal of the overlap between components based on calculated wear. The fretting wear analysis approach has been shown to model the evolution of wear effectively; however, it has been shown that accurate, quantitative values for wear are critically dependant on mesh refinement, wear scaling factor and fraction, wear coefficient used and knowledge of the device loading history. The method has been implemented with a 3D finite element model of the taper junction of a commercial total hip replacement. This has been used to determine taper wear patterns, wear damage and wear rates which have been shown to be consistant with those found from observation and measurement of retrieved prostheses. The numerical method could be used to consider the effect of design changes and clinical technique on subsequent fretting wear in modular prosthetic devices

    Selective suppression of local interneuron circuits in human motor cortex contributes to movement preparation.

    Get PDF
    Changes in neural activity occur in the motor cortex prior to movement, but the nature and purpose of this preparatory activity is unclear. To investigate this in the human (male and female) brain non-invasively, we used transcranial magnetic stimulation (TMS) to probe the excitability of distinct sets of excitatory inputs to corticospinal neurones during the warning period of various reaction time tasks. Using two separate methods (H-reflex conditioning and directional effects of TMS), we show that a specific set of excitatory inputs to corticospinal neurones are suppressed during motor preparation, whilst another set of inputs remain unaffected. To probe the behavioural relevance of this suppression, we examined whether the strength of the selective preparatory inhibition in each trial was related to reaction time. Surprisingly, the greater the amount of selective preparatory inhibition, the faster the reaction time was. This suggests that the inhibition of inputs to corticospinal neurones is not involved in preventing release of movement but may in fact facilitate rapid reactions. Thus, selective suppression of a specific set of motor cortical neurones may be a key aspect of successful movement preparation.Significance statementMovement preparation evokes substantial activity in the motor cortex despite no apparent movement. One explanation for the lack of movement is that motor cortical output in this period is gated by an inhibitory mechanism. This notion was supported by previous non-invasive TMS studies of human motor cortex indicating a reduction of corticospinal excitability. On the contrary, our data supports the idea that there is a coordinated balance of activity upstream of the corticospinal output neurones. This includes a suppression of specific local circuits that supports, rather than inhibits, the rapid generation of prepared movements. Thus, the selective suppression of local circuits appears to be an essential part of successful movement preparation, instead of an external control mechanism

    A simple all-microwave entangling gate for fixed-frequency superconducting qubits

    Full text link
    We demonstrate an all-microwave two-qubit gate on superconducting qubits which are fixed in frequency at optimal bias points. The gate requires no additional subcircuitry and is tunable via the amplitude of microwave irradiation on one qubit at the transition frequency of the other. We use the gate to generate entangled states with a maximal extracted concurrence of 0.88 and quantum process tomography reveals a gate fidelity of 81%

    Protecting superconducting qubits from external sources of loss and heat

    Full text link
    We characterize a superconducting qubit before and after embedding it along with its package in an absorptive medium. We observe a drastic improvement in the effective qubit temperature and over a tenfold improvement in the relaxation time up to 5.7 μ\mus. Our results suggest the presence of external radiation inside the cryogenic apparatus can be a limiting factor for both qubit initialization and coherence. We infer from simple calculations that relaxation is not limited by thermal photons in the sample prior to embedding, but by dissipation arising from quasiparticle generation.Comment: 3 figure
    corecore