17,735 research outputs found

    Efficient POMDP Forward Search by Predicting the Posterior Belief Distribution

    Get PDF
    Online, forward-search techniques have demonstrated promising results for solving problems in partially observable environments. These techniques depend on the ability to efficiently search and evaluate the set of beliefs reachable from the current belief. However, enumerating or sampling action-observation sequences to compute the reachable beliefs is computationally demanding; coupled with the need to satisfy real-time constraints, existing online solvers can only search to a limited depth. In this paper, we propose that policies can be generated directly from the distribution of the agent's posterior belief. When the underlying state distribution is Gaussian, and the observation function is an exponential family distribution, we can calculate this distribution of beliefs without enumerating the possible observations. This property not only enables us to plan in problems with large observation spaces, but also allows us to search deeper by considering policies composed of multi-step action sequences. We present the Posterior Belief Distribution (PBD) algorithm, an efficient forward-search POMDP planner for continuous domains, demonstrating that better policies are generated when we can perform deeper forward search

    Accelerated Carrier Recombination by Grain Boundary/Edge Defects in MBE Grown Transition Metal Dichalcogenides

    Full text link
    Defect-carrier interaction in transition metal dichalcogenides (TMDs) play important roles in carrier relaxation dynamics and carrier transport, which determines the performance of electronic devices. With femtosecond laser time-resolved spectroscopy, we investigated the effect of grain boundary/edge defects on the ultrafast dynamics of photoexcited carrier in MBE grown MoTe2 and MoSe2. We found that, comparing with exfoliated samples, carrier recombination rate in MBE grown samples accelerates by about 50 times. We attribute this striking difference to the existence of abundant grain boundary/edge defects in MBE grown samples, which can serve as effective recombination centers for the photoexcited carriers. We also observed coherent acoustic phonons in both exfoliated and MBE grown MoTe2, indicating strong electron-phonon coupling in this materials. Our measured sound velocity agrees well with previously reported result of theoretical calculation. Our findings provide useful reference for the fundamental parameters: carrier lifetime and sound velocity, reveal the undiscovered carrier recombination effect of grain boundary/edge defects, both of which will facilitate the defect engineering in TMD materials for high speed opto-electronics

    Observational constraints on an interacting dark energy model

    Get PDF
    We use observations of cosmic microwave background anisotropies, supernova luminosities and the baryon acoustic oscillation signal in the galaxy distribution to constrain the cosmological parameters in a simple interacting dark energy model with a time-varying equation of state. Using a Monte Carlo Markov Chain technique we determine the posterior likelihoods. Constraints from the individual data sets are weak, but the combination of the three data sets confines the interaction constant Γ\Gamma to be less than 23% of the expansion rate of the Universe H0H_0; at 95% CL 0.23<Γ/H0<+0.15-0.23 < \Gamma/H_0 < +0.15. The CMB acoustic peaks can be well fitted even if the interaction rate is much larger, but this requires a larger or smaller (depending on the sign of interaction) matter density today than in the non-interacting model. Due to this degeneracy between the matter density and the interaction rate, the only observable effect on the CMB is a larger or smaller integrated Sachs-Wolfe (ISW) effect. While SN or BAO data alone do not set any direct constraints on the interaction, they exclude the models with very large matter density, and hence indirectly constrain the interaction rate when jointly analysed with the CMB data. To enable the analysis described in this paper, we present in a companion paper [arXiv:0907.4981] a new systematic analysis of the early radiation era solution to find the adiabatic initial conditions for the Boltzmann integration.Comment: 16 pages, 10 figures. V2: Improved typography (2-column format); References and a motivation of CPL parametrization added; Accepted by MNRA

    Anomalous Neutrino Interaction, Muon g-2, and Atomic Parity Nonconservation

    Get PDF
    We propose a simple unified description of two recent precision measurements which suggest new physics beyond the Standard Model of particle interactions, i.e. the deviation of sin2θW\sin^2 \theta_W in deep inelastic neutrino-nucleon scattering and that of the anomalous magnetic moment of the muon. Our proposal is also consistent with a third precision measurement, i.e. that of parity nonconservation in atomic Cesium, which agrees with the Standard Model.Comment: 9 pages, including 1 figure, latest muon g-2 information adde

    Unbroken supersymmetry in the Aharonov-Casher effect

    Full text link
    We consider the problem of the bound states of a spin 1/2 chargless particle in a given Aharonov-Casher configuration. To this end we recast the description of the system in a supersymmetric form. Then the basic physical requirements for unbroken supersymmetry are established. We comment on the possibility of neutron confinement in this system

    Evaluating Promotional Approaches for Citizen Science Biological Recording: Bumblebees as a Group Versus Harmonia axyridis as a Flagship for Ladybirds

    Get PDF
    Over the past decade, the number of biological records submitted by members of the public have increased dramatically. However, this may result in reduced record quality, depending on how species are promoted in the media. Here we examined the two main promotional approaches for citizen science recording schemes: flagship-species, using one charismatic species as an umbrella for the entire group (here, Harmonia axyridis (Pallas) for Coleoptera: Coccinellidae), and general-group, where the group is promoted as a whole and no particular prominence is given to any one species (here, bumblebees, genus Bombus (Hymenoptera: Apidae)). Of the two approaches, the general-group approach produced data that was not biased towards any one species, but far fewer records per year overall. In contrast, the flagship-species approach generated a much larger annual dataset, but heavily biased towards the flagship itself. Therefore, we recommend that the approach for species promotion is fitted to the result desired

    Mapping species distributions: A comparison of skilled naturalist and lay citizen science recording

    Get PDF
    To assess the ability of traditional biological recording schemes and lay citizen science approaches to gather data on species distributions and changes therein, we examined bumblebee records from the UK’s national repository (National Biodiversity Network) and from BeeWatch. The two recording approaches revealed similar relative abundances of bumblebee species but different geographical distributions. For the widespread common carder (Bombus pascuorum), traditional recording scheme data were patchy, both spatially and temporally, reflecting active record centre rather than species distribution. Lay citizen science records displayed more extensive geographic coverage, reflecting human population density, thus offering better opportunities to account for recording effort. For the rapidly spreading tree bumblebee (Bombus hypnorum), both recording approaches revealed similar distributions due to a dedicated mapping project which overcame the patchy nature of naturalist records. We recommend, where possible, complementing skilled naturalist recording with lay citizen science programmes to obtain a nation-wide capability, and stress the need for timely uploading of data to the national repository

    Disappearance of Transverse Flow in Central Collisions for Heavier Nuclei

    Full text link
    For the first time, mass dependence of balance energy only for heavier systems has been studied. Our results are in excellent agreement with the data which allow us to predict the balance energy of U+U, for the first time, around 37-39 MeV/nucleon. Also our results indicate a hard equation of state along with nucleon-nucleon cross-section around 40 mb.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Origins of Intermediate Velocity Particle Production in Heavy Ion Reactions

    Full text link
    Investigation of intermediate-velocity particle production is performed on entrance channel mass asymmetric collisions of 58Ni+C and 58Ni+Au at 34.5 MeV/nucleon. Distinctions between prompt pre-equilibrium ejections, multiple neck ruptures and an alternative phenomenon of delayed aligned asymmetric breakup is achieved using source reconstructed correlation observables and time-based cluster recognition in molecular dynamics simulations.Comment: 5 pages, 4 figure

    Summation of Power Series by Self-Similar Factor Approximants

    Full text link
    A novel method of summation for power series is developed. The method is based on the self-similar approximation theory. The trick employed is in transforming, first, a series expansion into a product expansion and in applying the self-similar renormalization to the latter rather to the former. This results in self-similar factor approximants extrapolating the sought functions from the region of asymptotically small variables to their whole domains. The method of constructing crossover formulas, interpolating between small and large values of variables is also analysed. The techniques are illustrated on different series which are typical of problems in statistical mechanics, condensed-matter physics, and, generally, in many-body theory.Comment: 30 pages + 5 ps figures, some misprints have been correcte
    corecore