106 research outputs found

    10Gbit/s modulation of a fast switching slotted Fabry-Pérot tunable laser

    Get PDF
    The device used is a three-section, 3mum wide ridge waveguide laser based on commercially available material. During the fabrication a series of slots are introduced into the front and back sections, which act as sites of internal reflections. The slots are etched to a depth that just penetrates the top of the upper waveguide resulting in an internal reflectance of-1% at each slot. The front, middle, and back sections are 180, 690 and 170 microns long respectively. In this work the back and middle sections are tied together electrically allowing simpler control of the device. By varying the applied DC currents, eight discrete channels are observed over a range of approximately 19nm

    Fast wavelength switching lasers using two-section slotted Fabry-Pérot structures

    Get PDF
    Fast wavelength switching of a two-section slotted Fabry–PÉrot laser structure is presented. The slot design enables operation at five discrete wavelength channels spaced by 10 nm by tuning one section of the device. These wavelengths operate with sidemode suppression ratio in excess of 35 dB, and switching times between these channels of approximately 1 ns are demonstrated

    Fast switching tunable laser sources for wavelength division multiplexing in passive optical access networks

    Get PDF
    Tunable laser structures with nanosecond switching time between wavelength channels and low-power injection locking are demonstrated on a low-cost platform. These lasers are suitable as source or slave lasers in WDM passive optical access networks

    En-route to the fission-fusion reaction mechanism: a status update on laser-driven heavy ion acceleration

    Full text link
    The fission-fusion reaction mechanism was proposed in order to generate extremely neutron-rich nuclei close to the waiting point N = 126 of the rapid neutron capture nucleosynthesis process (r-process). The production of such isotopes and the measurement of their nuclear properties would fundamentally help to increase the understanding of the nucleosynthesis of the heaviest elements in the universe. Major prerequisite for the realization of this new reaction scheme is the development of laser-based acceleration of ultra-dense heavy ion bunches in the mass range of A = 200 and above. In this paper, we review the status of laser-driven heavy ion acceleration in the light of the fission-fusion reaction mechanism. We present results from our latest experiment on heavy ion acceleration, including a new milestone with laser-accelerated heavy ion energies exceeding 5 MeV/u

    A novel two-section tunable discrete mode Fabry-PÉrot laser exhibiting nanosecond wavelength switching

    Get PDF
    A novel widely tunable laser diode is proposed and demonstrated. Mode selection occurs by etching perturbing slots into the laser ridge. A two-section device is realized with different slot patterns in each section allowing Vernier tuning. The laser operates at 1.3 mum and achieves a maximum output power of 10 mW. A discontinuous tuning range of 30 nm was achieved with a side mode suppression greater than 30 dB. Wavelength switching times of approximately 1.5 ns between a number of wavelength channels separated by 7 nm have been demonstrated

    Time-and-motion tool for the assessment of working time in tuberculosis laboratories: a multicentre study

    Get PDF
    SETTING: Implementation of novel diagnostic assays in tuberculosis (TB) laboratory diagnosis requires effective management of time and resources. OBJECTIVE: To further develop and assess at multiple centres a time-and-motion (T&M) tool as an objective means for recording the actual time spent on running laboratory assays. DESIGN: Multicentre prospective study conducted in six European Union (EU) reference TB laboratories. RESULTS: A total of 1060 specimens were tested using four laboratory assays. The number of specimens per batch varied from one to 60; a total of 64 recordings were performed. Theoretical hands-on times per specimen (TTPS) in h:min:s for Xpert® MTB/RIF, mycobacterial interspersed repetitive unit-variable number of tandem repeats genotyping, Ziehl-Neelsen staining and manual fluorescence microscopy were respectively 00:33:02 ± 00:12:32, 00:13:34 ± 00:03:11, 00:09:54 ± 00:00:53 and 00:06:23 ± 00:01:36. Variations between laboratories were predominantly linked to the time spent on reporting and administrative procedures. Processing specimens in batches could help save time in highly automated assays (e.g., line-probe) (TTPS 00:14:00 vs. 00:09:45 for batches comprising 7 and 31 specimens, respectively). CONCLUSIONS: The T&M tool can be considered a universal and objective methodology contributing to workload assessment in TB diagnostic laboratories. Comparison of workload between laboratories could help laboratory managers justify their resource and personnel needs for the implementation of novel, time-saving, cost-effective technologies, as well as identify areas for improvement

    High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes

    Get PDF
    Freestanding semipolar (11–22) indium gallium nitride (InGaN) multiplequantum-well light-emitting diodes (LEDs) emitting at 445 nm have been realized by the use of laser lift-off (LLO) of the LEDs from a 50- m-thick GaN layer grown on a patterned (10–12) r -plane sapphire substrate (PSS). The GaN grooves originating from the growth on PSS were removed by chemical mechanical polishing. The 300 m × 300 m LEDs showed a turn-on voltage of 3.6 V and an output power through the smooth substrate of 0.87 mW at 20 mA. The electroluminescence spectrum of LEDs before and after LLO showed a stronger emission intensity along the [11–23]InGaN/GaN direction. The polarization anisotropy is independent of the GaN grooves, with a measured value of 0.14. The bandwidth of the LEDs is in excess of 150 MHz at 20 mA, and back-to-back transmission of 300 Mbps is demonstrated, making these devices suitable for visible light communication (VLC) applications

    Notes on a scandal: the official enquiry into deviance and corruption in New Zealand police

    Get PDF
    Since 2004, the New Zealand Police Service has been engulfed by a series of scandals relating to allegations that officers have committed rape and sexual assault and conducted inappropriate sexual relations with vulnerable people. Moreover, it has been claimed that other officers engaged in corrupt practices to thwart the investigation and prosecution of criminal behaviour of police officers. In 2007, a Commission of Inquiry report established a program of reform intended to shape the future direction of the police service. This article provides an overview of these scandals, the context in which they have emerged, and the political and policing response to them. The analysis contained in the Commission report is compared with that offered by comparable investigations of police deviance and corruption in other countries. The methodological and conceptual limitations of the Commission are outlined and the prospects of the recommendations are considered

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
    corecore