982 research outputs found

    Manipulating infrared photons using plasmons in transparent graphene superlattices

    Full text link
    Superlattices are artificial periodic nanostructures which can control the flow of electrons. Their operation typically relies on the periodic modulation of the electric potential in the direction of electron wave propagation. Here we demonstrate transparent graphene superlattices which can manipulate infrared photons utilizing the collective oscillations of carriers, i.e., plasmons of the ensemble of multiple graphene layers. The superlattice is formed by depositing alternating wafer-scale graphene sheets and thin insulating layers, followed by patterning them all together into 3-dimensional photonic-crystal-like structures. We demonstrate experimentally that the collective oscillation of Dirac fermions in such graphene superlattices is unambiguously nonclassical: compared to doping single layer graphene, distributing carriers into multiple graphene layers strongly enhances the plasmonic resonance frequency and magnitude, which is fundamentally different from that in a conventional semiconductor superlattice. This property allows us to construct widely tunable far-infrared notch filters with 8.2 dB rejection ratio and terahertz linear polarizers with 9.5 dB extinction ratio, using a superlattice with merely five graphene atomic layers. Moreover, an unpatterned superlattice shields up to 97.5% of the electromagnetic radiations below 1.2 terahertz. This demonstration also opens an avenue for the realization of other transparent mid- and far-infrared photonic devices such as detectors, modulators, and 3-dimensional meta-material systems.Comment: under revie

    Potential of Mimulas glabratus in removal of Fe and Cu from the aqueous solutions containing Nitrate and Phosphate and its growth responses

    Get PDF
    The metal bioabsorption potential and survival efficiency of aquatic macrophyte M. glabratus was examined for the removal of Fe and Cu in presence of nitrate and Phosphates. M.glabratus removes Fe 10% more than Cu in  case of bio-chemical and physical responses the increment in fresh weight found 0.74% more in Fe treated plants than Cu treated plants and in photosynthetic pigments there was 10% more increment was noted in the plants treated with Fe. Bioabsorption of Fe was noted 18.9% more than Cu by M. glabratus. The results demonstrate that M.glabratus can be utilized in the remediation operations of aquatic systems Keywords: Bioabsorption, M. glabratus, Photosynthetic pigments, Biomas

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    DeepAlign: Alignment-based Process Anomaly Correction using Recurrent Neural Networks

    Full text link
    In this paper, we propose DeepAlign, a novel approach to multi-perspective process anomaly correction, based on recurrent neural networks and bidirectional beam search. At the core of the DeepAlign algorithm are two recurrent neural networks trained to predict the next event. One is reading sequences of process executions from left to right, while the other is reading the sequences from right to left. By combining the predictive capabilities of both neural networks, we show that it is possible to calculate sequence alignments, which are used to detect and correct anomalies. DeepAlign utilizes the case-level and event-level attributes to closely model the decisions within a process. We evaluate the performance of our approach on an elaborate data corpus of 252 realistic synthetic event logs and compare it to three state-of-the-art conformance checking methods. DeepAlign produces better corrections than the rest of the field reaching an overall F1F_1 score of 0.95720.9572 across all datasets, whereas the best comparable state-of-the-art method reaches 0.64110.6411

    Encoding conformance checking artefacts in SAT

    Get PDF
    Conformance checking strongly relies on the computation of artefacts, which enable reasoning on the relation between observed and modeled behavior. This paper shows how important conformance artefacts like alignments, anti-alignments or even multi-alignments, defined over the edit distance, can be computed by encoding the problem as a SAT instance. From a general perspective, the work advocates for a unified family of techniques that can compute conformance artefacts in the same way. The prototype implementation of the techniques presented in this paper show capabilities for dealing with some of the current benchmarks, and potential for the near future when optimizations similar to the ones in the literature are incorporated.Peer ReviewedPostprint (author's final draft

    Encoding conformance checking artefacts in SAT

    Get PDF
    Conformance checking strongly relies on the computation of artefacts, which enable reasoning on the relation between observed and modeled behavior. This paper shows how important conformance artefacts like alignments, anti-alignments or even multi-alignments, defined over the edit distance, can be computed by encoding the problem as a SAT instance. From a general perspective, the work advocates for a unified family of techniques that can compute conformance artefacts in the same way. The prototype implementation of the techniques presented in this paper show capabilities for dealing with some of the current benchmarks, and potential for the near future when optimizations similar to the ones in the literature are incorporated.Peer ReviewedPostprint (author's final draft

    Subgraph Mining for Anomalous Pattern Discovery in Event Logs

    Full text link
    Conformance checking allows organizations to verify whether their IT system complies with the prescribed behavior by comparing process executions recorded by the IT system against a process model (representing the normative behavior). However, most of the existing techniques are only able to identify low-level deviations, which provide a scarce support to investigate what actually happened when a process execution deviates from the specification. In this work, we introduce an approach to extract recurrent deviations from historical logging data and generate anomalous patterns representing high-level deviations. These patterns provide analysts with a valuable aid for investigating nonconforming behaviors; moreover, they can be exploited to detect high-level deviations during conformance checking. To identify anomalous behaviors from historical logging data, we apply frequent subgraph mining techniques together with an ad-hoc conformance checking technique. Anomalous patterns are then derived by applying frequent items algorithms to determine highly-correlated deviations, among which ordering relations are inferred. The approach has been validated by means of a set of experiments

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya

    Get PDF
    The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning
    corecore