1,588 research outputs found
Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance
Quantum ground-state problems are computationally hard problems; for general
many-body Hamiltonians, there is no classical or quantum algorithm known to be
able to solve them efficiently. Nevertheless, if a trial wavefunction
approximating the ground state is available, as often happens for many problems
in physics and chemistry, a quantum computer could employ this trial
wavefunction to project the ground state by means of the phase estimation
algorithm (PEA). We performed an experimental realization of this idea by
implementing a variational-wavefunction approach to solve the ground-state
problem of the Heisenberg spin model with an NMR quantum simulator. Our
iterative phase estimation procedure yields a high accuracy for the
eigenenergies (to the 10^-5 decimal digit). The ground-state fidelity was
distilled to be more than 80%, and the singlet-to-triplet switching near the
critical field is reliably captured. This result shows that quantum simulators
can better leverage classical trial wavefunctions than classical computers.Comment: 11 pages, 13 figure
Effect of temperature anisotropy on various modes and instabilities for a magnetized non-relativistic bi-Maxwellian plasma
Using kinetic theory for homogeneous collisionless magnetized plasmas, we
present an extended review of the plasma waves and instabilities and discuss
the anisotropic response of generalized relativistic dielectric tensor and
Onsager symmetry properties for arbitrary distribution functions. In general,
we observe that for such plasmas only those electromagnetic modes whose
magnetic field perturbations are perpendicular to the ambient magneticeld,
i.e.,B1 \perp B0, are effected by the anisotropy. However, in oblique
propagation all modes do show such anisotropic effects. Considering the
non-relativistic bi-Maxwellian distribution and studying the relevant
components of the general dielectric tensor under appropriate conditions, we
derive the dispersion relations for various modes and instabilities. We show
that only the electromagnetic R- and L- waves, those derived from them and the
O-mode are affected by thermal anisotropies, since they satisfy the required
condition B1\perpB0. By contrast, the perpendicularly propagating X-mode and
the modes derived from it (the pure transverse X-mode and Bernstein mode) show
no such effect. In general, we note that the thermal anisotropy modifies the
parallel propagating modes via the parallel acoustic effect, while it modifies
the perpendicular propagating modes via the Larmor-radius effect. In oblique
propagation for kinetic Alfven waves, the thermal anisotropy affects the
kinetic regime more than it affects the inertial regime. The generalized fast
mode exhibits two distinct acoustic effects, one in the direction parallel to
the ambient magnetic field and the other in the direction perpendicular to it.
In the fast-mode instability, the magneto-sonic wave causes suppression of the
firehose instability. We discuss all these propagation characteristics and
present graphic illustrations
Quantum dynamics in strong fluctuating fields
A large number of multifaceted quantum transport processes in molecular
systems and physical nanosystems can be treated in terms of quantum relaxation
processes which couple to one or several fluctuating environments. A thermal
equilibrium environment can conveniently be modelled by a thermal bath of
harmonic oscillators. An archetype situation provides a two-state dissipative
quantum dynamics, commonly known under the label of a spin-boson dynamics. An
interesting and nontrivial physical situation emerges, however, when the
quantum dynamics evolves far away from thermal equilibrium. This occurs, for
example, when a charge transferring medium possesses nonequilibrium degrees of
freedom, or when a strong time-dependent control field is applied externally.
Accordingly, certain parameters of underlying quantum subsystem acquire
stochastic character. Herein, we review the general theoretical framework which
is based on the method of projector operators, yielding the quantum master
equations for systems that are exposed to strong external fields. This allows
one to investigate on a common basis the influence of nonequilibrium
fluctuations and periodic electrical fields on quantum transport processes.
Most importantly, such strong fluctuating fields induce a whole variety of
nonlinear and nonequilibrium phenomena. A characteristic feature of such
dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres
Isothiocyanates are detected in human synovial fluid following broccoli consumption and can affect the tissues of the knee joint
Osteoarthritis is a major cause of disability and there is no current pharmaceutical treatment which can prevent the disease or slow its progression. Dietary advice or supplementation is clearly an attractive option since it has low toxicity and ease of implementation on a population level. We have previously demonstrated that sulforaphane, a dietary isothiocyanate derived from its glucosinolate precursor which is found in broccoli, can prevent cartilage destruction in cells, in in vitro and in vivo models of osteoarthritis. As the next phase of this research, we enrolled 40 patients with knee osteoarthritis undergoing total knee replacement into a proof-of-principle trial. Patients were randomised to either a low or high glucosinolate diet for 14 days prior to surgery. We detected ITCs in the synovial fluid of the high glucosinolate group, but not the low glucosinolate group. This was mirrored by an increase in ITCs and specifically sulforaphane in the plasma. Proteomic analysis of synovial fluid showed significantly distinct profiles between groups with 125 differentially expressed proteins. The functional consequence of this diet will now be tested in a clinical trial
Stellar winds from Massive Stars
We review the various techniques through which wind properties of massive
stars - O stars, AB supergiants, Luminous Blue Variables (LBVs), Wolf-Rayet
(WR) stars and cool supergiants - are derived. The wind momentum-luminosity
relation (e.g. Kudritzki et al. 1999) provides a method of predicting mass-loss
rates of O stars and blue supergiants which is superior to previous
parameterizations. Assuming the theoretical sqrt(Z) metallicity dependence,
Magellanic Cloud O star mass-loss rates are typically matched to within a
factor of two for various calibrations. Stellar winds from LBVs are typically
denser and slower than equivalent B supergiants, with exceptional mass-loss
rates during giant eruptions Mdot=10^-3 .. 10^-1 Mo/yr (Drissen et al. 2001).
Recent mass-loss rates for Galactic WR stars indicate a downward revision of
2-4 relative to previous calibrations due to clumping (e.g. Schmutz 1997),
although evidence for a metallicity dependence remains inconclusive (Crowther
2000). Mass-loss properties of luminous (> 10^5 Lo) yellow and red supergiants
from alternative techniques remain highly contradictory. Recent Galactic and
LMC results for RSG reveal a large scatter such that typical mass-loss rates
lie in the range 10^-6 .. 10^-4 Mo/yr, with a few cases exhibiting 10^-3 Mo/yr.Comment: 16 pages, 2 figures, Review paper to appear in Proc `The influence of
binaries on stellar population studies', Brussels, Aug 2000 (D. Vanbeveren
ed.), Kluwe
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Is Sustained Virological Response a Marker of Treatment Efficacy in Patients with Chronic Hepatitis C Viral Infection with No Response or Relapse to Previous Antiviral Intervention?
Background: Randomised clinical trials (RCTs) of antiviral interventions in patients with chronic hepatitis C virus (HCV) infection use sustained virological response (SVR) as the main outcome. There is sparse information on long-term mortality from RCTs. Methods: We created a decision tree model based on a Cochrane systematic review on interferon retreatment for patients who did not respond to initial therapy or who relapsed following SVR. Extrapolating data to 20 years, we modelled the outcome from three scenarios: (1) observed medium-term (5 year) annual mortality rates continue to the long term (20 years); (2) long-term annual mortality in retreatment responders falls to that of the general population while retreatment non-responders continue at the medium-term mortality; (3) long-term annual mortality in retreatment non-responders is the same as control group non-responders (i.e., the increased treatment-related medium mortality “wears off”). Results: The mean differences in life expectancy over 20 years with interferon versus control in the first, second, and third scenarios were -0.34 years (95% confidence interval (CI) -0.71 to 0.03), -0.23 years (95% CI -0.69 to 0.24), and -0.01 (95% CI -0.3 to 0.27), respectively. The life expectancy was always lower in the interferon group than in the control group in scenario 1. In scenario 3, the interferon group had a longer life expectancy than the control group only when more than 7% in the interferon group achieved SVR. Conclusions: SVR may be a good prognostic marker but does not seem to be a valid surrogate marker for assessing HCV treatment efficacy of interferon retreatment. The SVR threshold at which retreatment increases life expectancy may be different for different drugs depending upon the adverse event profile and treatment efficacy. This has to be determined for each drug by RCTs and appropriate modelling before SVR can be accepted as a surrogate marker
Developing theory-informed behaviour change interventions to implement evidence into practice : a systematic approach using the Theoretical Domains Framework
PMID: 22531013 [PubMed - indexed for MEDLINE] PMCID: PMC3443064 Free PMC ArticlePeer reviewedPublisher PD
Astrocyte pathology in the prefrontal cortex impairs the cognitive function of rats
Interest in astroglial cells is rising due to recent findings supporting dynamic neuron-astrocyte interactions. There is increasing evidence of astrocytic dysfunction in several brain disorders such as depression, schizophrenia or bipolar disorder; importantly these pathologies are characterized by the involvement of the prefrontal cortex and by significant cognitive impairments. Here, to model astrocyte pathology, we injected animals with the astrocyte specific toxin L-a-aminoadipate (L-AA) in the medial prefrontal cortex (mPFC); a behavioral and structural characterization two and six days after the injection was performed. Behavioral data shows that the astrocyte pathology in the mPFC affects the attentional set-shifting, the working memory and the reversal learning functions. Histological analysis of brain sections of the L-AA-injected animals revealed a pronounced loss of astrocytes in the targeted region. Interestingly, analysis of neurons in the lesion sites showed a progressive neuronal loss that was accompanied with dendritic atrophy in the surviving neurons. These results suggest that the L-AA-induced astrocytic loss in the mPFC triggers subsequent neuronal damage leading to cognitive impairment in tasks depending on the integrity of this brain region. These findings are of relevance to better understand the pathophysiological mechanisms underlying disorders that involve astrocytic loss/dysfunction in the PFC.This work was supported by the Marie Curie Fellowship FP7-PEOPLE-2010-IEF 273936, BIAL Foundation Grants 138/2008 and 61/2010, FEDER funds through Operational program for competitiveness factors-COMPETE -, ON2 Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN/FEDER, and by national funds through FCT-Foundation for Science and Technology-project (PTDC/SAU-NSC/118194/2010) and fellowships (SFRH/BPD/66151/2009 and SFRH/BD/89714/2012)
- …
