461 research outputs found

    Gene expression polymorphism underpins evasion of host immunity in an asexual lineage of the Irish potato famine pathogen

    Get PDF
    BACKGROUND: Outbreaks caused by asexual lineages of fungal and oomycete pathogens are a continuing threat to crops, wild animals and natural ecosystems (Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ, Nature 484:186-194, 2012; Kupferschmidt K, Science 337:636-638, 2012). However, the mechanisms underlying genome evolution and phenotypic plasticity in asexual eukaryotic microbes remain poorly understood (Seidl MF, Thomma BP, BioEssays 36:335-345, 2014). Ever since the 19th century Irish famine, the oomycete Phytophthora infestans has caused recurrent outbreaks on potato and tomato crops that have been primarily caused by the successive rise and migration of pandemic asexual lineages (Goodwin SB, Cohen BA, Fry WE, Proc Natl Acad Sci USA 91:11591-11595, 1994; Yoshida K, Burbano HA, Krause J, Thines M, Weigel D, Kamoun S, PLoS Pathog 10:e1004028, 2014; Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, et al. eLife 2:e00731, 2013; Cooke DEL, Cano LM, Raffaele S, Bain RA, Cooke LR, Etherington GJ, Deahl KL, Farrer RA, Gilroy EM, Goss EM, et al. PLoS Pathog 8:e1002940, 2012). However, the dynamics of genome evolution within these clonal lineages have not been determined. The objective of this study was to use a comparative genomics and transcriptomics approach to determine the molecular mechanisms that underpin phenotypic variation within a clonal lineage of P. infestans. RESULTS: Here, we reveal patterns of genomic and gene expression variation within a P. infestans asexual lineage by comparing strains belonging to the South American EC-1 clone that has dominated Andean populations since the 1990s (Yoshida K, Burbano HA, Krause J, Thines M, Weigel D, Kamoun S, PLoS Pathog 10e1004028, 2014; Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, et al. eLife 2:e00731, 2013; Delgado RA, Monteros-Altamirano AR, Li Y, Visser RGF, van der Lee TAJ, Vosman B, Plant Pathol 62:1081-1088, 2013; Forbes GA, Escobar XC, Ayala CC, Revelo J, Ordonez ME, Fry BA, Doucett K, Fry WE, Phytopathology 87:375-380, 1997; Oyarzun PJ, Pozo A, Ordonez ME, Doucett K, Forbes GA, Phytopathology 88:265-271, 1998). We detected numerous examples of structural variation, nucleotide polymorphisms and loss of heterozygosity within the EC-1 clone. Remarkably, 17 genes are not expressed in one of the two EC-1 isolates despite apparent absence of sequence polymorphisms. Among these, silencing of an effector gene was associated with evasion of disease resistance conferred by a potato immune receptor. CONCLUSIONS: Our findings highlight the molecular changes underpinning the exceptional genetic and phenotypic plasticity associated with host adaptation in a pandemic clonal lineage of a eukaryotic plant pathogen. We observed that the asexual P. infestans lineage EC-1 can exhibit phenotypic plasticity in the absence of apparent genetic mutations resulting in virulence on a potato carrying the Rpi-vnt1.1 gene. Such variant alleles may be epialleles that arose through epigenetic changes in the underlying genes

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved

    Safety and Activity of PolyPEPI1018 Combined with Maintenance Therapy in Metastatic Colorectal Cancer: an Open-Label, Multicenter, Phase Ib Study

    Get PDF
    Purpose: Although chemotherapy is standard of care for met- astatic colorectal cancer (mCRC), immunotherapy has no role in microsatellite stable (MSS) mCRC, a “cold” tumor. PolyPEPI1018 is an off-the-shelf, multi-peptide vaccine derived from 7 tumor- associated antigens (TAA) frequently expressed in mCRC. This study assessed PolyPEPI1018 combined with first-line maintenance therapy in patients with MSS mCRC. Patients and Methods: Eleven patients with MSS mCRC received PolyPEPI1018 and Montanide ISA51VG adjuvant subcutaneously, combined with fluoropyrimidine/biologic follow- ing first-line induction with chemotherapy and a biologic (NCT03391232). In Part A of the study, 5 patients received a single dose; in Part B, 6 patients received up to three doses of Poly- PEPI1018 every 12 weeks. The primary objective was safety; sec- ondary objectives were preliminary efficacy, immunogenicity at peripheral and tumor level, and immune correlates. Results: PolyPEPI1018 vaccination was safe and well tolerated. No vaccine-related serious adverse event occurred. Eighty percent of patients had CD8þ T-cell responses against ≥3 TAAs. Increased density of tumor-infiltrating lymphocytes were detected post- treatment for 3 of 4 patients’ liver biopsies, combined with increased expression of immune-related gene signatures. Three patients had objective response according to RECISTv1.1, and 2 patients qual- ified for curative surgery. Longer median progression-free survival for patients receiving multiple doses compared with a single dose (12.5 vs. 4.6 months; P 1⁄4 0.017) suggested a dose–efficacy correlation. The host HLA genotype predicted multi-antigen– specific T-cell responses (P 1⁄4 0.01) indicative of clinical outcome. Conclusions: PolyPEPI1018 added to maintenance chemother- apy for patients with unresectable, MSS mCRC was safe and associated with specific immune responses and antitumor activity warranting further confirmation in a randomized, controlled setting

    A genomic epidemiological study shows that prevalence of antimicrobial resistance in Enterobacterales is associated with the livestock host, as well as antimicrobial usage

    Get PDF
    Enterobacterales from livestock are potentially important reservoirs for antimicrobial resistance (AMR) to pass through the food chain to humans, thereby increasing the AMR burden and affecting our ability to tackle infections. In this study 168 isolates from four genera of the order Enterobacterales, primarily Escherichia coli, were purified from livestock (cattle, pigs and sheep) faeces from 14 farms in the United Kingdom. Their genomes were resolved using long- and short-read sequencing to analyse AMR genes and their genetic context, as well as to explore the relationship between AMR burden and on-farm antimicrobial usage (AMU), in the three months prior to sampling. Although E. coli isolates were genomically diverse, phylogenetic analysis using a core-genome SNP tree indicated pig isolates to generally be distinct from sheep isolates, with cattle isolates being intermediates. Approximately 28 % of isolates harboured AMR genes, with the greatest proportion detected in pigs, followed by cattle then sheep; pig isolates also harboured the highest number of AMR genes per isolate. Although 90 % of sequenced isolates harboured diverse plasmids, only 11 % of plasmids (n=58 out of 522) identified contained AMR genes, with 91 % of AMR plasmids being from pig, 9 % from cattle and none from sheep isolates; these results indicated that pigs were a principle reservoir of AMR genes harboured by plasmids and likely to be involved in their horizontal transfer. Significant associations were observed between AMU (mg kg−1) and AMR. As both the total and the numbers of different antimicrobial classes used on-farm increased, the risk of multi-drug resistance (MDR) in isolates rose. However, even when AMU on pig farms was comparatively low, pig isolates had increased likelihood of being MDR; harbouring relatively more resistances than those from other livestock species. Therefore, our results indicate that AMR prevalence in livestock is not only influenced by recent AMU on-farm but also livestock-related factors, which can influence the AMR burden in these reservoirs and its plasmid mediated transmission

    Protein binding hot spots and the residue-residue pairing preference: a water exclusion perspective

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A protein binding hot spot is a small cluster of residues tightly packed at the center of the interface between two interacting proteins. Though a hot spot constitutes a small fraction of the interface, it is vital to the stability of protein complexes. Recently, there are a series of hypotheses proposed to characterize binding hot spots, including the pioneering O-ring theory, the insightful 'coupling' and 'hot region' principle, and our 'double water exclusion' (DWE) hypothesis. As the perspective changes from the O-ring theory to the DWE hypothesis, we examine the physicochemical properties of the binding hot spots under the new hypothesis and compare with those under the O-ring theory.</p> <p>Results</p> <p>The requirements for a cluster of residues to form a hot spot under the DWE hypothesis can be mathematically satisfied by a biclique subgraph if a vertex is used to represent a residue, an edge to indicate a close distance between two residues, and a bipartite graph to represent a pair of interacting proteins. We term these hot spots as DWE bicliques. We identified DWE bicliques from crystal packing contacts, obligate and non-obligate interactions. Our comparative study revealed that there are abundant <it>unique </it>bicliques to the biological interactions, indicating specific biological binding behaviors in contrast to crystal packing. The two sub-types of biological interactions also have their own signature bicliques. In our analysis on residue compositions and residue pairing preferences in DWE bicliques, the focus was on interaction-preferred residues (ipRs) and interaction-preferred residue pairs (ipRPs). It is observed that hydrophobic residues are heavily involved in the ipRs and ipRPs of the obligate interactions; and that aromatic residues are in favor in the ipRs and ipRPs of the biological interactions, especially in those of the non-obligate interactions. In contrast, the ipRs and ipRPs in crystal packing are dominated by hydrophilic residues, and most of the anti-ipRs of crystal packing are the ipRs of the obligate or non-obligate interactions.</p> <p>Conclusions</p> <p>These ipRs and ipRPs in our DWE bicliques describe a diverse binding features among the three types of interactions. They also highlight the specific binding behaviors of the biological interactions, sharply differing from the artifact interfaces in the crystal packing. It can be noted that DWE bicliques, especially the unique bicliques, can capture deep insights into the binding characteristics of protein interfaces.</p

    Genetic Dissection of Epidermal Growth Factor Receptor Signaling during Luteinizing Hormone-Induced Oocyte Maturation

    Get PDF
    Recent evidence that luteinizing hormone (LH) stimulation of ovulatory follicles causes transactivation of the epidermal growth factor receptor (EGFR) has provided insights into the mechanisms of ovulation. However, the complete array of signals that promote oocyte reentry into the meiotic cell cycle in the follicle are still incompletely understood. To elucidate the signaling downstream of EGFR involved in oocyte maturation, we have investigated the LH responses in granulosa cells with targeted ablation of EGFR. Oocyte maturation and ovulation is disrupted when EGFR expression is progressively reduced. In granulosa cells from mice with either global or granulosa cell-specific disruption of EGFR signaling, LH-induced phosphorylation of MAPK3/1, p38MAPK, and connexin-43 is impaired. Although the LH-induced decrease in cGMP is EGFR-dependent in wild type follicles, LH still induces a decrease in cGMP in Egfrdelta/f Cyp19-Cre follicles. Thus compensatory mechanisms appear activated in the mutant. Spatial propagation of the LH signal in the follicle also is dependent on the EGF network, and likely is important for the control of signaling to the oocyte. Thus, multiple signals and redundant pathways contribute to regulating oocyte reentry into the cell cycle

    Systemic Inhibition of NF-κB Activation Protects from Silicosis

    Get PDF
    Background: Silicosis is a complex lung disease for which no successful treatment is available and therefore lung transplantation is a potential alternative. Tumor necrosis factor alpha (TNFα) plays a central role in the pathogenesis of silicosis. TNFα signaling is mediated by the transcription factor, Nuclear Factor (NF)-κB, which regulates genes controlling several physiological processes including the innate immune responses, cell death, and inflammation. Therefore, inhibition of NF-κB activation represents a potential therapeutic strategy for silicosis. Methods/Findings: In the present work we evaluated the lung transplant database (May 1986-July 2007) at the University of Pittsburgh to study the efficacy of lung transplantation in patients with silicosis (n = 11). We contrasted the overall survival and rate of graft rejection in these patients to that of patients with idiopathic pulmonary fibrosis (IPF, n = 79) that was selected as a control group because survival benefit of lung transplantation has been identified for these patients. At the time of lung transplantation, we found the lungs of silica-exposed subjects to contain multiple foci of inflammatory cells and silicotic nodules with proximal TNFα expressing macrophage and NF-κB activation in epithelial cells. Patients with silicosis had poor survival (median survival 2.4 yr; confidence interval (CI): 0.16-7.88 yr) compared to IPF patients (5.3 yr; CI: 2.8-15 yr; p = 0.07), and experienced early rejection of their lung grafts (0.9 yr; CI: 0.22-0.9 yr) following lung transplantation (2.4 yr; CI:1.5-3.6 yr; p<0.05). Using a mouse experimental model in which the endotracheal instillation of silica reproduces the silica-induced lung injury observed in humans we found that systemic inhibition of NF-κB activation with a pharmacologic inhibitor (BAY 11-7085) of IκBα phosphorylation decreased silica-induced inflammation and collagen deposition. In contrast, transgenic mice expressing a dominant negative IκBα mutant protein under the control of epithelial cell specific promoters demonstrate enhanced apoptosis and collagen deposition in their lungs in response to silica. Conclusions: Although limited by its size, our data support that patients with silicosis appear to have poor outcome following lung transplantation. Experimental data indicate that while the systemic inhibition of NF-κB protects from silica-induced lung injury, epithelial cell specific NF-κB inhibition appears to aggravate the outcome of experimental silicosis. © 2009 Di Giuseppe et al

    Joint Evolutionary Trees: A Large-Scale Method To Predict Protein Interfaces Based on Sequence Sampling

    Get PDF
    The Joint Evolutionary Trees (JET) method detects protein interfaces, the core residues involved in the folding process, and residues susceptible to site-directed mutagenesis and relevant to molecular recognition. The approach, based on the Evolutionary Trace (ET) method, introduces a novel way to treat evolutionary information. Families of homologous sequences are analyzed through a Gibbs-like sampling of distance trees to reduce effects of erroneous multiple alignment and impacts of weakly homologous sequences on distance tree construction. The sampling method makes sequence analysis more sensitive to functional and structural importance of individual residues by avoiding effects of the overrepresentation of highly homologous sequences and improves computational efficiency. A carefully designed clustering method is parametrized on the target structure to detect and extend patches on protein surfaces into predicted interaction sites. Clustering takes into account residues' physical-chemical properties as well as conservation. Large-scale application of JET requires the system to be adjustable for different datasets and to guarantee predictions even if the signal is low. Flexibility was achieved by a careful treatment of the number of retrieved sequences, the amino acid distance between sequences, and the selective thresholds for cluster identification. An iterative version of JET (iJET) that guarantees finding the most likely interface residues is proposed as the appropriate tool for large-scale predictions. Tests are carried out on the Huang database of 62 heterodimer, homodimer, and transient complexes and on 265 interfaces belonging to signal transduction proteins, enzymes, inhibitors, antibodies, antigens, and others. A specific set of proteins chosen for their special functional and structural properties illustrate JET behavior on a large variety of interactions covering proteins, ligands, DNA, and RNA. JET is compared at a large scale to ET and to Consurf, Rate4Site, siteFiNDER|3D, and SCORECONS on specific structures. A significant improvement in performance and computational efficiency is shown
    corecore