135 research outputs found
Convergent recombination suppression suggests role of sexual selection in guppy sex chromosome formation.
Sex chromosomes evolve once recombination is halted between a homologous pair of chromosomes. The dominant model of sex chromosome evolution posits that recombination is suppressed between emerging X and Y chromosomes in order to resolve sexual conflict. Here we test this model using whole genome and transcriptome resequencing data in the guppy, a model for sexual selection with many Y-linked colour traits. We show that although the nascent Y chromosome encompasses nearly half of the linkage group, there has been no perceptible degradation of Y chromosome gene content or activity. Using replicate wild populations with differing levels of sexually antagonistic selection for colour, we also show that sexual selection leads to greater expansion of the non-recombining region and increased Y chromosome divergence. These results provide empirical support for longstanding models of sex chromosome catalysis, and suggest an important role for sexual selection and sexual conflict in genome evolution
Sex-specific Trans-regulatory Variation on the Drosophila melanogaster X Chromosome
The X chromosome constitutes a unique genomic environment because it is present in one copy in males, but two copies in females. This simple fact has motivated several theoretical predictions with respect to how standing genetic variation on the X chromosome should differ from the autosomes. Unmasked expression of deleterious mutations in males and a lower census size are expected to reduce variation, while allelic variants with sexually antagonistic effects, and potentially those with a sex-specific effect, could accumulate on the X chromosome and contribute to increased genetic variation. In addition, incomplete dosage compensation of the X chromosome could potentially dampen the male-specific effects of random mutations, and promote the accumulation of X-linked alleles with sexually dimorphic phenotypic effects. Here we test both the amount and the type of genetic variation on the X chromosome within a population of Drosophila melanogaster, by comparing the proportion of X linked and autosomal trans-regulatory SNPs with a sexually concordant and discordant effect on gene expression. We find that the X chromosome is depleted for SNPs with a sexually concordant effect, but hosts comparatively more SNPs with a sexually discordant effect. Interestingly, the contrasting results for SNPs with sexually concordant and discordant effects are driven by SNPs with a larger influence on expression in females than expression in males. Furthermore, the distribution of these SNPs is shifted towards regions where dosage compensation is predicted to be less complete. These results suggest that intrinsic properties of dosage compensation influence either the accumulation of different types of trans-factors and/or their propensity to accumulate mutations. Our findings document a potential mechanistic basis for sex-specific genetic variation, and identify the X as a reservoir for sexually dimorphic phenotypic variation. These results have general implications for X chromosome evolution, as well as the genetic basis of sex-specific evolutionary change
Genomic analysis of Sparus aurata reveals the evolutionary dynamics of sex-biased genes in a sequential hermaphrodite fish
Sexual dimorphism is a fascinating subject in evolutionary biology and mostly results from sex-biased expression of genes, which have been shown to evolve faster in gonochoristic species. We report here genome and sex-specific transcriptome sequencing of Sparus aurata, a sequential hermaphrodite fish. Evolutionary comparative analysis reveals that sex-biased genes in S. aurata are similar in number and function, but evolved following strikingly divergent patterns compared with gonochoristic species, showing overall slower rates because of stronger functional constraints. Fast evolution is observed only for highly ovary-biased genes due to female-specific patterns of selection that are related to the peculiar reproduction mode of S. aurata, first maturing as male, then as female. To our knowledge, these findings represent the first genome-wide analysis on sex-biased loci in a hermaphrodite vertebrate species, demonstrating how having two sexes in the same individual profoundly affects the fate of a large set of evolutionarily relevant genes.European Union
KBBE.2013.1.2-10
European Community
311920
Fondazione Cassa di Risparmio Padova e Rovigo
FCT - Foundation for Science and Technology
research grant SPARCOMP under the Call ARISTEIA I of the National Strategic Reference Framework - by the EU
36
Hellenic Republic through the European Social Fundinfo:eu-repo/semantics/publishedVersio
Meiotic Transmission of Drosophila pseudoobscura Chromosomal Arrangements
Drosophila pseudoobscura harbors a rich gene arrangement polymorphism on the third chromosome generated by a series of overlapping paracentric inversions. The arrangements suppress recombination in heterokaryotypic individuals, which allows for the selective maintenance of coadapted gene complexes. Previous mapping experiments used to determine the degree to which recombination is suppressed in gene arrangement heterozygotes produced non-recombinant progeny in non-Mendelian ratios. The deviations from Mendelian expectations could be the result of viability differences between wild and mutant chromosomes, meiotic drive because of achiasmate pairing of homologues in heterokaryotypic females during meiosis, or a combination of both mechanisms. The possibility that the frequencies of the chromosomal arrangements in natural populations are affected by mechanisms other than adaptive selection led us to consider these hypotheses. We performed reciprocal crosses involving both heterozygous males and females to determine if the frequency of the non-recombinant progeny deviates significantly from Mendelian expectations and if the frequencies deviate between reciprocal crosses. We failed to observe non-Mendelian ratios in multiple crosses, and the frequency of the non-recombinant classes differed in only one of five pairs of reciprocal crosses despite sufficient power to detect these differences in all crosses. Our results indicate that deviations from Mendelian expectations in recombination experiments involving the D. pseudoobscura inversion system are most likely due to fitness differences of gene arrangement karyotypes in different environments
Re-analysis of the larval testis data on meiotic sex chromosome inactivation revealed evidence for tissue-specific gene expression related to the drosophila X chromosome
<p>Abstract</p> <p>Background</p> <p>Meiotic sex chromosome inactivation (MSCI) during spermatogenesis has been proposed as one of the evolutionary driving forces behind both the under-representation of male-biased genes on, and the gene movement out of, the X chromosome in <it>Drosophila</it>. However, the relevance of MSCI in shaping sex chromosome evolution is controversial. Here we examine two aspects of a recent study on testis gene expression (Mikhaylova and Nurminsky, <it>BMC Biol </it>2011, <b>9:</b>29) that failed to support the MSCI in <it>Drosophila</it>. First, Mikhaylova and Nurminsky found no differences between X-linked and autosomal genes based on the transcriptional profiling of the early testis development, and thus concluded that MSCI does not occur in <it>D. melanogaster</it>. Second, they also analyzed expression data from several <it>D. melanogaster </it>tissues and concluded that under-representation on the X chromosome is not an exclusive property of testis-biased genes, but instead, a general property of tissue-specific genes.</p> <p>Results</p> <p>By re-analyzing the Mikhaylova and Nurminsky's testis data and the expression data on several <it>D. melanogaster </it>tissues, we made two major findings that refuted their original claims. First, the developmental testis data has generally greater experimental error than conventional analyses, which reduced significantly the power to detect chromosomal differences in expression. Nevertheless, our re-analysis observed significantly lower expression of the X chromosome in the genomic transcriptomes of later development stages of the testis, which is consistent with the MSCI hypothesis. Second, tissue-specific genes are also in general enriched with genes more expressed in testes than in ovaries, that is testis-biased genes. By completely excluding from the analyses the testis-biased genes, which are known to be under-represented in the X, we found that all the other tissue-specific genes are randomly distributed between the X chromosome and the autosomes.</p> <p>Conclusions</p> <p>Our findings negate the original study of Mikhaylova and Nurminsky, which concluded a lack of MSCI and generalized the pattern of paucity in the X chromosome for tissue-specific genes in <it>Drosophila</it>. Therefore, MSCI and other selection-based models such as sexual antagonism, dosage compensation, and meiotic-drive continue to be viable models as driving forces shaping the genomic distribution of male-related genes in <it>Drosophila</it>.</p
Stage-Specific Expression Profiling of Drosophila Spermatogenesis Suggests that Meiotic Sex Chromosome Inactivation Drives Genomic Relocation of Testis-Expressed Genes
In Drosophila, genes expressed in males tend to accumulate on autosomes and are underrepresented on the X chromosome. In particular, genes expressed in testis have been observed to frequently relocate from the X chromosome to the autosomes. The inactivation of X-linked genes during male meiosis (i.e., meiotic sex chromosome inactivation—MSCI) was first proposed to explain male sterility caused by X-autosomal translocation in Drosophila, and more recently it was suggested that MSCI might provide the conditions under which selection would favor the accumulation of testis-expressed genes on autosomes. In order to investigate the impact of MSCI on Drosophila testis-expressed genes, we performed a global gene expression analysis of the three major phases of D. melanogaster spermatogenesis: mitosis, meiosis, and post-meiosis. First, we found evidence supporting the existence of MSCI by comparing the expression levels of X- and autosome-linked genes, finding the former to be significantly reduced in meiosis. Second, we observed that the paucity of X-linked testis-expressed genes was restricted to those genes highly expressed in meiosis. Third, we found that autosomal genes relocated through retroposition from the X chromosome were more often highly expressed in meiosis in contrast to their X-linked parents. These results suggest MSCI as a general mechanism affecting the evolution of some testis-expressed genes
Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment
BACKGROUND:
Adult house flies, Musca domestica L., are mechanical vectors of more than 100 devastating diseases that have severe consequences for human and animal health. House fly larvae play a vital role as decomposers of animal wastes, and thus live in intimate association with many animal pathogens.
RESULTS:
We have sequenced and analyzed the genome of the house fly using DNA from female flies. The sequenced genome is 691 Mb. Compared with Drosophila melanogaster, the genome contains a rich resource of shared and novel protein coding genes, a significantly higher amount of repetitive elements, and substantial increases in copy number and diversity of both the recognition and effector components of the immune system, consistent with life in a pathogen-rich environment. There are 146 P450 genes, plus 11 pseudogenes, in M. domestica, representing a significant increase relative to D. melanogaster and suggesting the presence of enhanced detoxification in house flies. Relative to D. melanogaster, M. domestica has also evolved an expanded repertoire of chemoreceptors and odorant binding proteins, many associated with gustation.
CONCLUSIONS:
This represents the first genome sequence of an insect that lives in intimate association with abundant animal pathogens. The house fly genome provides a rich resource for enabling work on innovative methods of insect control, for understanding the mechanisms of insecticide resistance, genetic adaptation to high pathogen loads, and for exploring the basic biology of this important pest. The genome of this species will also serve as a close out-group to Drosophila in comparative genomic studies
Spinning Gland Transcriptomics from Two Main Clades of Spiders (Order: Araneae) - Insights on Their Molecular, Anatomical and Behavioral Evolution
Characterized by distinctive evolutionary adaptations, spiders provide a comprehensive system for evolutionary and developmental studies of anatomical organs, including silk and venom production. Here we performed cDNA sequencing using massively parallel sequencers (454 GS-FLX Titanium) to generate ∼80,000 reads from the spinning gland of Actinopus spp. (infraorder: Mygalomorphae) and Gasteracantha cancriformis (infraorder: Araneomorphae, Orbiculariae clade). Actinopus spp. retains primitive characteristics on web usage and presents a single undifferentiated spinning gland while the orbiculariae spiders have seven differentiated spinning glands and complex patterns of web usage. MIRA, Celera Assembler and CAP3 software were used to cluster NGS reads for each spider. CAP3 unigenes passed through a pipeline for automatic annotation, classification by biological function, and comparative transcriptomics. Genes related to spider silks were manually curated and analyzed. Although a single spidroin gene family was found in Actinopus spp., a vast repertoire of specialized spider silk proteins was encountered in orbiculariae. Astacin-like metalloproteases (meprin subfamily) were shown to be some of the most sampled unigenes and duplicated gene families in G. cancriformis since its evolutionary split from mygalomorphs. Our results confirm that the evolution of the molecular repertoire of silk proteins was accompanied by the (i) anatomical differentiation of spinning glands and (ii) behavioral complexification in the web usage. Finally, a phylogenetic tree was constructed to cluster most of the known spidroins in gene clades. This is the first large-scale, multi-organism transcriptome for spider spinning glands and a first step into a broad understanding of spider web systems biology and evolution
Comparative Genomic Hybridization (CGH) Reveals a Neo-X Chromosome and Biased Gene Movement in Stalk-Eyed Flies (Genus Teleopsis)
Chromosomal location has a significant effect on the evolutionary dynamics of genes involved in sexual dimorphism, impacting both the pattern of sex-specific gene expression and the rate of duplication and protein evolution for these genes. For nearly all non-model organisms, however, knowledge of chromosomal gene content is minimal and difficult to obtain on a genomic scale. In this study, we utilized Comparative Genomic Hybridization (CGH), using probes designed from EST sequence, to identify genes located on the X chromosome of four species in the stalk-eyed fly genus Teleopsis. Analysis of log2 ratio values of female-to-male hybridization intensities from the CGH microarrays for over 3,400 genes reveals a strongly bimodal distribution that clearly differentiates autosomal from X-linked genes for all four species. Genotyping of 33 and linkage mapping of 28 of these genes in Teleopsis dalmanni indicate the CGH results correctly identified chromosomal location in all cases. Syntenic comparison with Drosophila indicates that 90% of the X-linked genes in Teleopsis are homologous to genes located on chromosome 2L in Drosophila melanogaster, suggesting the formation of a nearly complete neo-X chromosome from Muller element B in the dipteran lineage leading to Teleopsis. Analysis of gene movement both relative to Drosophila and within Teleopsis indicates that gene movement is significantly associated with 1) rates of protein evolution, 2) the pattern of gene duplication, and 3) the evolution of eyespan sexual dimorphism. Overall, this study reveals that diopsids are a critical group for understanding the evolution of sex chromosomes within Diptera. In addition, we demonstrate that CGH is a useful technique for identifying chromosomal sex-linkage and should be applicable to other organisms with EST or partial genomic information
Trace element analysis of whole-rock glass beads of geological reference materials by Nd:YAG UV 213 nm LA-ICP-MS
- …
