697 research outputs found
Moisture transport by Atlantic tropical cyclones onto the North American continent
Tropical Cyclones (TCs) are an important source of freshwater for the North American continent. Many studies have tried to estimate this contribution by identifying TC-induced precipitation events, but few have explicitly diagnosed the moisture fluxes across continental boundaries. We design a set of attribution schemes to isolate the column-integrated moisture fluxes that are directly associated with TCs and to quantify the flux onto the North American Continent due to TCs. Averaged over the 2004–2012 hurricane seasons and integrated over the western, southern and eastern coasts of North America, the seven schemes attribute 7 to 18 % (mean 14 %) of total net onshore flux to Atlantic TCs. A reduced contribution of 10 % (range 9 to 11 %) was found for the 1980–2003 period, though only two schemes could be applied to this earlier period. Over the whole 1980–2012 period, a further 8 % (range 6 to 9 % from two schemes) was attributed to East Pacific TCs, resulting in a total TC contribution of 19 % (range 17 to 22 %) to the ocean-to-land moisture transport onto the North American continent between May and November. Analysis of the attribution uncertainties suggests that incorporating details of individual TC size and shape adds limited value to a fixed radius approach and TC positional errors in the ERA-Interim reanalysis do not affect the results significantly, but biases in peak wind speeds and TC sizes may lead to underestimates of moisture transport. The interannual variability does not appear to be strongly related to the El Nino-Southern Oscillation phenomenon
The Dark Side of the Electroweak Phase Transition
Recent data from cosmic ray experiments may be explained by a new GeV scale
of physics. In addition the fine-tuning of supersymmetric models may be
alleviated by new O(GeV) states into which the Higgs boson could decay. The
presence of these new, light states can affect early universe cosmology. We
explore the consequences of a light (~ GeV) scalar on the electroweak phase
transition. We find that trilinear interactions between the light state and the
Higgs can allow a first order electroweak phase transition and a Higgs mass
consistent with experimental bounds, which may allow electroweak baryogenesis
to explain the cosmological baryon asymmetry. We show, within the context of a
specific supersymmetric model, how the physics responsible for the first order
phase transition may also be responsible for the recent cosmic ray excesses of
PAMELA, FERMI etc. We consider the production of gravity waves from this
transition and the possible detectability at LISA and BBO
Rab-GTPase binding effector protein 2 (RABEP2) is a primed substrate for Glycogen Synthase kinase-3 (GSK3)
Glycogen synthase kinase-3 (GSK3) regulates many physiological processes through phosphorylation of a diverse array of substrates. Inhibitors of GSK3 have been generated as potential therapies in several diseases, however the vital role GSK3 plays in cell biology makes the clinical use of GSK3 inhibitors potentially problematic. A clearer understanding of true physiological and pathophysiological substrates of GSK3 should provide opportunities for more selective, disease specific, manipulation of GSK3. To identify kinetically favourable substrates we performed a GSK3 substrate screen in heart tissue. Rab-GTPase binding effector protein 2 (RABEP2) was identified as a novel GSK3 substrate and GSK3 phosphorylation of RABEP2 at Ser200 was enhanced by prior phosphorylation at Ser204, fitting the known consensus sequence for GSK3 substrates. Both residues are phosphorylated in cells while only Ser200 phosphorylation is reduced following inhibition of GSK3. RABEP2 function was originally identified as a Rab5 binding protein. We did not observe co-localisation of RABEP2 and Rab5 in cells, while ectopic expression of RABEP2 had no effect on endosomal recycling. The work presented identifies RABEP2 as a novel primed substrate of GSK3, and thus a potential biomarker for GSK3 activity, but understanding how phosphorylation regulates RABEP2 function requires more information on physiological roles of RABEP2
Unnatural Origin of Fermion Masses for Technicolor
We explore the scenario in which the breaking of the electroweak symmetry is
due to the simultaneous presence and interplay of a dynamical sector and an
unnatural elementary Higgs. We introduce a low energy effective Lagrangian and
constrain the various couplings via direct search limits and electroweak and
flavor precision tests. We find that the model we study is a viable model of
dynamical breaking of the electroweak symmetry.Comment: 20 pages, 7 eps figure
Top quark forward-backward asymmetry in R-parity violating supersymmetry
The interaction of bottom squark-mediated top quark pair production,
occurring in the R-parity violating minimal supersymmetric standard model
(MSSM), is proposed as an explanation of the anomalously large
forward-backward asymmetry (FBA) observed at the Tevatron. We find that this
model can give a good fit to top quark data, both the inclusive and invariant
mass-dependent asymmetries, while remaining consistent (at the 2-
level) with the total and differential production cross-sections. The scenario
is challenged by strong constraints from atomic parity violation (APV), but we
point out an extra diagram for the effective down quark-Z vertex, involving the
same coupling constant as required for the FBA, which tends to weaken the APV
constraint, and which can nullify it for reasonable values of the top squark
masses and mixing angle. Large contributions to flavor-changing neutral
currents can be avoided if only the third generation of sparticles is light.Comment: 24 pages, 7 figures. v3: included LHC top production cross section
data; model still consistent at 2 sigma leve
Apparent correlation of palaeomagnetic intensity and climatic records in deep-sea sediments
Most reports of a correlation between Pleistocene climate and geomagnetic field intensity rely strongly on the assumption that sediment natural remanent magnetic (NRM) intensity provides a record of geomagnetic field strength and is not sensitive to local changes in properties of the sediment. Critical assessment of relevant data presented here and elsewhere from deep-sea sediment cores shows that a pronounced dependence of NRM intensity on sediment composition can occur which implies that this assumption is unlikely to be generally valid. As sediment composition often reflects varying depositional conditions induced by climatic change, the significance of correlations proposed between Pleistocene palaeomagnetism and climatic indicators in deep-sea sediments may be less dramatic than sometimes supposed
Decoupling property of the supersymmetric Higgs sector with four doublets
In supersymmetric standard models with multi Higgs doublet fields,
selfcoupling constants in the Higgs potential come only from the D-terms at the
tree level. We investigate the decoupling property of additional two heavier
Higgs doublet fields in the supersymmetric standard model with four Higgs
doublets. In particular, we study how they can modify the predictions on the
quantities well predicted in the minimal supersymmetric standard model (MSSM),
when the extra doublet fields are rather heavy to be measured at collider
experiments. The B-term mixing between these extra heavy Higgs bosons and the
relatively light MSSM-like Higgs bosons can significantly change the
predictions in the MSSM such as on the masses of MSSM-like Higgs bosons as well
as the mixing angle for the two light CP-even scalar states. We first give
formulae for deviations in the observables of the MSSM in the decoupling region
for the extra two doublet fields. We then examine possible deviations in the
Higgs sector numerically, and discuss their phenomenological implications.Comment: 26 pages, 24 figures, text sligtly modified,version to appear in
Journal of High Energy Physic
Extreme Technicolor & The Walking Critical Temperature
We map the phase diagram of gauge theories of fundamental interactions in the
flavor-temperature plane using chiral perturbation theory to estimate the
relation between the pion decaying constant and the critical temperature above
which chiral symmetry is restored. We then investigate the impact of our
results on models of dynamical electroweak symmetry breaking and therefore on
the electroweak early universe phase transition.Comment: RevTeX, 18 pages, 3 figure
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
- …
