67 research outputs found
Spatio-temporal Models of Lymphangiogenesis in Wound Healing
Several studies suggest that one possible cause of impaired wound healing is
failed or insufficient lymphangiogenesis, that is the formation of new
lymphatic capillaries. Although many mathematical models have been developed to
describe the formation of blood capillaries (angiogenesis), very few have been
proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a
markedly different process from angiogenesis, occurring at different times and
in response to different chemical stimuli. Two main hypotheses have been
proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the
edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic
endothelial cells first pool in the wound region following the lymph flow and
then, once sufficiently populated, start to form a network. Here we present two
PDE models describing lymphangiogenesis according to these two different
hypotheses. Further, we include the effect of advection due to interstitial
flow and lymph flow coming from open capillaries. The variables represent
different cell densities and growth factor concentrations, and where possible
the parameters are estimated from biological data. The models are then solved
numerically and the results are compared with the available biological
literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total
Identification and HLA-Tetramer-Validation of Human CD4(+) and CD8(+) T Cell Responses against HCMV Proteins IE1 and IE2
Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy
A Single CD8+ T Cell Epitope Sets the Long-Term Latent Load of a Murid Herpesvirus
The pathogenesis of persistent viral infections depends critically on long-term viral loads. Yet what determines these loads is largely unknown. Here, we show that a single CD8+ T cell epitope sets the long-term latent load of a lymphotropic gamma-herpesvirus, Murid herpesvirus-4 (MuHV-4). The MuHV-4 M2 latency gene contains an H2-Kd -restricted T cell epitope, and wild-type but not M2− MuHV-4 was limited to very low level persistence in H2d mice. Mutating the epitope anchor residues increased viral loads and re-introducing the epitope reduced them again. Like the Kaposi's sarcoma–associated herpesvirus K1, M2 shows a high frequency of non-synonymous mutations, suggesting that it has been selected for epitope loss. In vivo competition experiments demonstrated directly that epitope presentation has a major impact on viral fitness. Thus, host MHC class I and viral epitope expression interact to set the long-term virus load
Geographical distribution and risk factors for Echinococcus granulosus infection in peri-urban wild dog populations
The transmission of zoonotic pathogens associated with wildlife in peri-urban environments can be influenced by the interplay of numerous socioecological factors. Echinococcus granulosus is known to be common within peri-urban wild dog populations however knowledge of the factors that influence its presence is limited. We investigated the demographic distribution of adult cestode abundance (ACA: defined as the product between prevalence of infection and adult cestode infection intensity) and the role of the physical environment, climate and individual factors in determining the geographical variation of E. granulosus infection in wild dog populations from southeast Queensland and surrounds. Our results align with previous studies that show significant E. granulosus aggregation in that 15.8% of peri-urban wild dogs sampled were responsible for ∼70% of the total adult cestode infection intensity. On average, female dogs were found to have a higher ACA than male dogs, and the average ACA generally decreased with age. Significant geographical variation was found in the prevalence of E. granulosus, with a strong propensity for clustering. The average size of clusters was 22.5 km. The probability of finding E. granulosus infection significantly increased with maximum temperature, relative humidity, and rainfall, and after accounting for individual and climatic variables, the model accounted for the majority of the spatial dependence in prevalence. Our predictive map of E. granulosus prevalence in peri-urban wild dogs confirms that E. granulosus is highly endemic in the eastern Australia study area. The prediction map provides a useful tool for targeting potential disease management strategies in peri-urban areas, where broad scale management of wild dog populations is difficult to implement
Modeling and simulation of temperature drift for ISFET‐based pH sensor and its compensation through machine learning techniques
Advanced drug-delivery systems: mechanoresponsive nanoplatforms applicable in atherosclerosis management
Balanced Scorecard Development: A Review of Literature and Directions for Future Research
Induction of antigen-specific regulatory T cells in the liver-draining celiac lymph node following oral antigen administration
Characteristics and Functional Implications of Spontaneous Sarcoplasmic Reticulum-Generated Cytosolic Calcium Oscillations in Myocardial Tissue
- …
