5 research outputs found
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
Deriving site‐specific soil clean‐up values for metals and metalloids: Rationale for including protection of soil microbial processes
Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions
The uptake of trace metals by plants is commonly assumed to depend on the free metal-ion activity, rather than on the total concentration of dissolved metal. Although this free-ion hypothesis has proved to be useful for the interpretation and prediction of metal uptake, several exceptions have been reported where metal complexes also affected metal uptake by plants. In this study, we measured uptake of Zn and Cu by spinach (Spinacia oleracea L.) and tomato (Lycopersicon esculentum L.) in chelator-buffered or resin (Chelex)-buffered solutions, under Zn-deficient and non-deficient conditions. Several ligands, with differing dissociation rates, were used in the chelator-buffered solutions. At the same free-ion activity, Cu and Zn uptake was less in Chelex-buffered than in chelator-buffered solutions. In the chelator-buffered solution, uptake of Cu and Zn at same free-ion activity and same total concentration followed the order: NTA > HEDTA > EDTA > CDTA, i.e., the same order as the dissociation rate. These differences in metal uptake were also reflected in the deficiency symptoms and plant yield in the experiments where Zn deficiency was imposed. The critical Zn2+ activity for Zn deficiency varied by one order of magnitude depending on the buffer, and followed the order HEDTA < CDTA < resin-buffered (no soluble ligand). These results suggest that, when present, aqueous complexes can increase metal uptake by plants because uptake is rate-limited by diffusion of the free ion to the root or cell surface. Thus, the critical free-ion activity in chelator-buffered solutions depends on the type and concentration of the ligand employed. © 2006 Springer Science+Business Media B.V.F. Degryse, E. Smolders, D. R. Parke
