82 research outputs found
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Beyond the Insider—Outsider Perspective: The Study of Religion as a Study of Discourse Construction
This essay reflects on contemporary theorizing of religion which embodies an explicit critique of the imperial project, seeing that by most common consent the scholarly disciplinary field of religious studies (history of religion, phenomenology of religion, Religionswissenschaft) is a late nineteenth century invention that coincides with the emergence of anthropology and ethnography as epiphenomena of the colonial project (whether as Orientalism or as exoticism the Other is rendered manageable subjects). The scholarly study of religion is, therefore, simultaneously a study of the history of theory and concept formation, and the social, cultural, and political work performed by such study and theorizing. The metatheory of the study of religion is a main focus of the essay. Alongside that, the essay focuses more pointedly on the concept of discourse, and considers the extraordinary situation where the same methodological vocabulary that functions in religious studies also functions in critical theological studies, which relativizes the division of ‘insider’ and ‘outsider’ perspectives. Yet both are conventionally practised either in isolation from each other as distinct theoretical and disciplinary bounded/defined study fields, or—the other and almost direct opposite—religious studies being performed in the context of theological study, situated in and offered by theological faculties. An overview of recent debates in the field of religious studies serves to highlight the continued struggle to demarcate the boundaries between the study of religion and the study of theology—in some of the recent, very strident debates mainstream religious studies is labelled as nothing more than theology. This contribution, then, aims at a kind of metatheoretical reflection on the study of religion and theology both as discourses that serve mythmaking, identity formation, culturally strategic purposes. That is, from the discourse perspective that is proposed here, it is possible to move beyond the definitional divide between religious studies and theology—even beyond ‘religion’ itself—to focus on the mundanely material practices that constitute that which is called religion. In the way in which the terms are used it is clear that the terminologies themselves bear the imprint of historical social discourses that occasioned the rise of their use. This essay, then, is something of a metacritique of the language of the study of religion—beyond religion, and beyond the study of religion and theology
Structural characterization of helitrons and their stepwise capturing of gene fragments in the maize genome
<p>Abstract</p> <p>Background</p> <p>As a newly identified category of DNA transposon, <it>helitrons </it>have been found in a large number of eukaryotes genomes. <it>Helitrons </it>have contributed significantly to the intra-specific genome diversity in maize. Although many characteristics of <it>helitrons </it>in the maize genome have been well documented, the sequence of an intact autonomous <it>helitrons </it>has not been identified in maize. In addition, the process of gene fragment capturing during the transposition of <it>helitrons </it>has not been characterized.</p> <p>Results</p> <p>The whole genome sequences of maize inbred line B73 were analyzed, 1,649 <it>helitron</it>-like transposons including 1,515 helAs and 134 helBs were identified. <it>ZmhelA1</it>, <it>ZmhelB1 </it>and <it>ZmhelB2 </it>all encode an open reading frame (ORF) with intact replication initiator (Rep) motif and a DNA helicase (Hel) domain, which are similar to previously reported autonomous <it>helitrons </it>in other organisms. The putative autonomous <it>ZmhelB1 </it>and <it>ZmhelB2 </it>contain an extra replication factor-a protein1 (RPA1) transposase (RPA-TPase) including three single strand DNA-binding domains (DBD)-A/-B/-C in the ORF. Over ninety percent of maize <it>helitrons </it>identified have captured gene fragments. HelAs and helBs carry 4,645 and 249 gene fragments, which yield 2,507 and 187 different genes respectively. Many <it>helitrons </it>contain mutilple terminal sequences, but only one 3'-terminal sequence had an intact "CTAG" motif. There were no significant differences in the 5'-termini sequence between the veritas terminal sequence and the pseudo sequence. <it>Helitrons </it>not only can capture fragments, but were also shown to lose internal sequences during the course of transposing.</p> <p>Conclusions</p> <p>Three putative autonomous elements were identified, which encoded an intact Rep motif and a DNA helicase domain, suggesting that autonomous <it>helitrons </it>may exist in modern maize. The results indicate that gene fragments captured during the transposition of many <it>helitrons </it>happen in a stepwise way, with multiple gene fragments within one <it>helitron </it>resulting from several sequential transpositions. In addition, we have proposed a potential mechanism regarding how <it>helitrons </it>with multiple termini are generated.</p
Application of a Mathematical Model to Describe the Effects of Chlorpyrifos on Caenorhabditis elegans Development
The nematode Caenorhabditis elegans is being assessed as an alternative model organism as part of an interagency effort to develop better means to test potentially toxic substances. As part of this effort, assays that use the COPAS Biosort flow sorting technology to record optical measurements (time of flight (TOF) and extinction (EXT)) of individual nematodes under various chemical exposure conditions are being developed. A mathematical model has been created that uses Biosort data to quantitatively and qualitatively describe C. elegans growth, and link changes in growth rates to biological events. Chlorpyrifos, an organophosphate pesticide known to cause developmental delays and malformations in mammals, was used as a model toxicant to test the applicability of the growth model for in vivo toxicological testing.L1 larval nematodes were exposed to a range of sub-lethal chlorpyrifos concentrations (0-75 microM) and measured every 12 h. In the absence of toxicant, C. elegans matured from L1s to gravid adults by 60 h. A mathematical model was used to estimate nematode size distributions at various times. Mathematical modeling of the distributions allowed the number of measured nematodes and log(EXT) and log(TOF) growth rates to be estimated. The model revealed three distinct growth phases. The points at which estimated growth rates changed (change points) were constant across the ten chlorpyrifos concentrations. Concentration response curves with respect to several model-estimated quantities (numbers of measured nematodes, mean log(TOF) and log(EXT), growth rates, and time to reach change points) showed a significant decrease in C. elegans growth with increasing chlorpyrifos concentration.Effects of chlorpyrifos on C. elegans growth and development were mathematically modeled. Statistical tests confirmed a significant concentration effect on several model endpoints. This confirmed that chlorpyrifos affects C. elegans development in a concentration dependent manner. The most noticeable effect on growth occurred during early larval stages: L2 and L3. This study supports the utility of the C. elegans growth assay and mathematical modeling in determining the effects of potentially toxic substances in an alternative model organism using high-throughput technologies
A structural comparison of human serum transferrin and human lactoferrin
The transferrins are a family of proteins that bind free iron in the blood and bodily fluids. Serum transferrins function to deliver iron to cells via a receptor-mediated endocytotic process as well as to remove toxic free iron from the blood and to provide an anti-bacterial, low-iron environment. Lactoferrins (found in bodily secretions such as milk) are only known to have an anti-bacterial function, via their ability to tightly bind free iron even at low pH, and have no known transport function. Though these proteins keep the level of free iron low, pathogenic bacteria are able to thrive by obtaining iron from their host via expression of outer membrane proteins that can bind to and remove iron from host proteins, including both serum transferrin and lactoferrin. Furthermore, even though human serum transferrin and lactoferrin are quite similar in sequence and structure, and coordinate iron in the same manner, they differ in their affinities for iron as well as their receptor binding properties: the human transferrin receptor only binds serum transferrin, and two distinct bacterial transport systems are used to capture iron from serum transferrin and lactoferrin. Comparison of the recently solved crystal structure of iron-free human serum transferrin to that of human lactoferrin provides insight into these differences
A Novel Protein Kinase-Like Domain in a Selenoprotein, Widespread in the Tree of Life
Selenoproteins serve important functions in many organisms, usually providing essential oxidoreductase enzymatic activity, often for defense against toxic xenobiotic substances. Most eukaryotic genomes possess a small number of these proteins, usually not more than 20. Selenoproteins belong to various structural classes, often related to oxidoreductase function, yet a few of them are completely uncharacterised
O sujeito na literatura acadêmica sobre gestão em saúde: notas para a questão da autonomia
Revival of the Magnetar PSR J1622–4950: Observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR
© 2018. The American Astronomical Society.. New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100 larger than during its dormant state. The X-ray flux one month after reactivation was at least 800 larger than during quiescence, and has been decaying exponentially on a 111 19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation
Ethnicity and sexuality
This paper explores the connections between ethnicity and sexuality. Racial, ethnic, and national boundaries are also sexual boundaries. The borderlands dividing racial, ethnic, and national identities and communities constitute ethnosexual frontiers, erotic intersections that are heavily patrolled, policed, and protected, yet regularly are penetrated by individuals forging sexual links with ethnic "others." Normative heterosexuality is a central component of racial, ethnic, and nationalist ideologies; both adherence to and deviation from approved sexual identities and behaviors define and reinforce racial, ethnic, and nationalist regimes. To illustrate the ethnicity/sexuality nexus and to show the utility of revealing this intimate bond for understanding ethnic relations, I review constructionist models of ethnicity and sexuality in the social sciences and humanities, and I discuss ethnosexual boundary processes in several historical and contemporary settings: the sexual policing of nationalism, sexual aspects of US-American Indian relations, and the sexualization of the black-white color line
- …
