97 research outputs found
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial
Circulating microRNAs in sera correlate with soluble biomarkers of immune activation but do not predict mortality in ART treated individuals with HIV-1 infection: A case control study
Introduction: The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals. Materials and Methods: A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed. Results: None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR- 145 correlated with nadir CD4+ T cell count. Discussion: No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection
Short and long-term lifestyle coaching approaches used to address diverse participant barriers to weight loss and physical activity adherence
Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A
On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is . We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between and times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity
Risk factors associated with early mortality in patients with multiple myeloma who were treated upfront with a novel agents containing regimen
Italian Association of Clinical Endocrinologists (AME) position statement: a stepwise clinical approach to the diagnosis of gastroenteropancreatic neuroendocrine neoplasms
Localization and broadband follow-up of the gravitational-wave transient GW150914
A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams
Impaired expression of cell surface receptors for B cell growth factor by chronic lymphocytic leukemia B cells
Abstract
Normal human B cell proliferation is controlled by various immunoregulatory signals including the T cell-derived lymphokine B cell growth factor (BCGF). The role of BCGF in the regulation of malignant B cell proliferation is unclear. Therefore, we studied the proliferative response of purified chronic lymphocytic leukemia (CLL) B cells to BCGF. For all CLL patients studied, CLL B cells showed a decreased proliferative response as compared with control B cells for BCGF- induced B cell proliferation (patient 291 +/- 59 cpm v control 3,942 +/- 622, mean +/- SEM). This impaired proliferative response appeared to be intrinsic to CLL B cells since it was not corrected by incubation with increasing concentrations of BCGF. Attainment of normal B cell responsiveness to BCGF requires the processing of an initial activation signal which results in the expression of cell surface receptors for BCGF. Increasing concentrations of the B cell activation signal (the F(ab')2 fragment of goat anti-human mu chain) did not improve CLL B cell responsiveness to BCGF. Three-day activated CLL B cells compared with activated control B cells demonstrated a marked impairment in their ability to absorb out the BCGF activity present in the BCGF preparation (BCGF activity absorbed out, patient 12.8% v control 53%). Pretreatment of CLL B cells with neuraminidase failed to improve either the proliferative response to BCGF or the expression of cell surface receptors for BCGF by the CLL B cells. This study suggests that the impaired responsiveness to BCGF by CLL B cells is the result of impaired expression of cell surface receptors for BCGF when CLL B cells are exposed to activation signals.</jats:p
Impaired expression of cell surface receptors for B cell growth factor by chronic lymphocytic leukemia B cells
Normal human B cell proliferation is controlled by various immunoregulatory signals including the T cell-derived lymphokine B cell growth factor (BCGF). The role of BCGF in the regulation of malignant B cell proliferation is unclear. Therefore, we studied the proliferative response of purified chronic lymphocytic leukemia (CLL) B cells to BCGF. For all CLL patients studied, CLL B cells showed a decreased proliferative response as compared with control B cells for BCGF- induced B cell proliferation (patient 291 +/- 59 cpm v control 3,942 +/- 622, mean +/- SEM). This impaired proliferative response appeared to be intrinsic to CLL B cells since it was not corrected by incubation with increasing concentrations of BCGF. Attainment of normal B cell responsiveness to BCGF requires the processing of an initial activation signal which results in the expression of cell surface receptors for BCGF. Increasing concentrations of the B cell activation signal (the F(ab')2 fragment of goat anti-human mu chain) did not improve CLL B cell responsiveness to BCGF. Three-day activated CLL B cells compared with activated control B cells demonstrated a marked impairment in their ability to absorb out the BCGF activity present in the BCGF preparation (BCGF activity absorbed out, patient 12.8% v control 53%). Pretreatment of CLL B cells with neuraminidase failed to improve either the proliferative response to BCGF or the expression of cell surface receptors for BCGF by the CLL B cells. This study suggests that the impaired responsiveness to BCGF by CLL B cells is the result of impaired expression of cell surface receptors for BCGF when CLL B cells are exposed to activation signals.</jats:p
- …
