3,247 research outputs found

    Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine

    Get PDF
    Stem cells have been long looked at as possible therapeutic vehicles for different health related problems. Among the different existing stem cell populations, Adipose derived Stem Cells (ASCs) have been gathering attention in the last 10 years. When compared to other stem cells populations and sources, ASCs can be easily isolated while providing higher yields upon the processing of adipose tissue. Similar to other stem cell populations, it was initially thought that the main potential of ASCs for regenerative medicine approaches was intimately related to their differentiation capability. Although this is true, there has been an increasing body of literature describing the trophic effects of ASCs on the protection, survival and differentiation of a variety of endogenous cells/tissues. Moreover, they have also shown to possess an immunomodulatory character. This effect is closely related to the ASCs’ secretome and the soluble factors found within it. Molecules such as hepatocyte growth factor (HGF), granulocyte and macrophage colony stimulating factors, interleukins (ILs) 6, 7, 8 and 11, tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), brain derived neurotrophic factor (BDNF), nerve growth factor (NGF), adipokines and others have been identified within the ASCs’ secretome. Due to its importance regarding future applications for the field of regenerative medicine, we aim, in the present review, to make a comprehensive analysis of the literature relating to the ASCs’ secretome and its relevance to the immune and central nervous system, vascularization and cardiac regeneration. The concluding section will highlight some of the major challenges that remain before ASCs can be used for future clinical applications

    Biomaterials as Tendon and Ligament Substitutes: Current Developments

    Get PDF
    Tendon and ligament have specialized dynamic microenvironment characterized by a complex hierarchical extracellular matrix essential for tissue functionality, and responsible to be an instructive niche for resident cells. Among musculoskeletal diseases, tendon/ligament injuries often result in pain, substantial tissue morbidity, and disability, affecting athletes, active working people and elder population. This represents not only a major healthcare problem but it implies considerable social and economic hurdles. Current treatments are based on the replacement and/or augmentation of the damaged tissue with severe associated limitations. Thus, it is evident the clinical challenge and emergent need to recreate native tissue features and regenerate damaged tissues. In this context, the design and development of anisotropic bioengineered systems with potential to recapitulate the hierarchical architecture and organization of tendons and ligaments from nano to macro scale will be discussed in this chapter. Special attention will be given to the state-of-the-art fabrication techniques, namely spinning and electrochemical alignment techniques to address the demanding requirements for tendon substitutes, particularly concerning the importance of biomechanical and structural cues of these tissues. Moreover, the poor innate regeneration ability related to the low cellularity and vascularization of tendons and ligaments also anticipates the importance of cell based strategies, particularly on the stem cells role for the success of tissue engineered therapies. In summary, this chapter provides a general overview on tendon and ligaments physiology and current conventional treatments for injuries caused by trauma and/or disease. Moreover, this chapter presents tissue engineering approaches as an alternative to overcome the limitations of current therapies, focusing on the discussion about scaffolds design for tissue substitutes to meet the regenerative medicine challenges towards the functional restoration of damaged or degenerated tendon and ligament tissues.Portuguese Foundation for Science and Technology for the post-doctoral grant (SFRH/BPD/111729/2015) and for the projects Recognize (UTAP-ICDT/CTM-BIO/0023/2014) and POC I-01-0145-FEDER-007

    Mesenchymal stem cells in the umbilical cord: phenotypic characterization, secretome and applications in central nervous system regenerative medicine

    Get PDF
    Mesenchymal Stem Cells (MSCs), have been defined and characterized by: 1) their ability to adhere to plastic culture flasks; 2) the positive expression of CD105, CD73, CD90 membrane antigens, and the lack of expression of others (e.g CD45 and CD34) and 3) the ability of differentiation under adequate conditions along the osteogenic, chondrogenic and adipogenic lineages. In recent years, cells with these characteristics have been isolated from the Wharton’s jelly of the Umbilical Cord (UC). Similarly to bone marrow MSCs, they have shown multilineage differentiation potential and to be able to provide trophic support to neighboring cells. According to the literature, there are two main populations of cells with a mesenchymal character within the human UC: Wharton's jelly Mesenchymal Stem Cells (WJ-MSCs) and Human Umbilical Cord Perivascular Cells (HUCPVCs). In the present work our aim is to make a comprehensive review on MSC populations of the UC and how these cell populations may be used for future applications in CNS regenerative medicine. Following a brief insight on the general characteristics of MSC like cells, we will discuss the possible sources of stem cells within the WJ and the cord itself (apart UC blood), as well as their phenotypic character. As it has already been shown that these cells hold a strong trophic support to neighbouring cell populations, we will then focus on their secretome, namely which molecules have already been identified within it and their role in phenomena such as immunomodulation. The possible applications of these cell populations to CNS regenerative medicine will be addressed by critically reviewing the work that has been performed so far in this field. Finally, a brief insight will be made on what in the authors’ opinion are the major challenges in the field for the future application of these cell populations in CNS regenerative medicine.funds attributed by Fundação Calouste de Gulbenkian to A.J. Salgado under the scope of the The Gulbenkian Programme to Support research in Life Sciences; Portuguese Foundation for Science and Technology (FCT) (PhD scholarship to M.M. Carvalho - SFRH / BD / 51061 / 2010)

    Encapsulation of human articular chondrocytes into 3D hydrogel : phenotype and genotype characterization

    Get PDF
    This chapter is intended to provide a summary of the current materials used in cell encapsulation technology as well as methods for evaluating the performance of cells encapsulated in a polymeric matrix. In particular, it describes the experimental procedure to prepare a hydrogel matrix based on natural polymers for encapsulating and culturing human articular chondrocytes with the interest in cartilage regeneration. Protocols to evaluate the viability, proliferation, differentiation, and matrix production of embedded cells are also described and include standard protocols such as the MTT and [3H] Thymidine assays, reverse transcription polymerase chain reaction (RT-PCR) technique, histology, and immunohistochemistry analysis. The assessment of cell distribution within the 3D hydrogel construct is also described using APoTome analysis.(undefined

    Fabrication of anisotropically aligned nanofibrous scaffolds based on natural/synthetic polymer blends reinforced with cellulose nanocrystals for tendon tissue engineering

    Get PDF
    [Excerpt] Introduction: Tendon disorders and injuries are among the most common musculoskeletal problems and their regeneration after injury remains a significant challenge. Given the prevalent fibrous nature of tendons’ ECM, which exhibits an aligned and hierarchical organization in structures from the nano to the macro scale, uniaxial aligned electrospun nanofibers produced from natural/synthetic polymer blends are among the most successful tendon scaffolds in tissue engineering (TE) strategies[1]. These biomaterials can provide the topographical cues to direct cell adhesion and proliferation, as well as positively affecting cell’s differentiation, phenotype maintenance and matrix deposition. However, the limited mechanical properties of electrospun biomaterials restrict their potential application in this field. In the present study, we propose the use of cellulose nanocrystals (CNCs), the “nature carbon nanotubes”, as a strategy for the reinforcement of electrospun poly­ɛ­caprolactone­chitosan (PCL­C) nanofiber scaffolds without compromising their biological performance and thus expand their potential range of application in tendon TE strategies. (...

    The effect of insulin-loaded chitosan particle-aggregated scaffolds in chondrogenic differentiation

    Get PDF
    Osteochondral defect repair requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using a scaffold–cell construct. One ideal approach would be to engineer in vitro a hybrid material using a single-cell source. For that purpose, the scaffold should be able to provide the adequate biochemical cues to promote the selective but simultaneous differentiation of both tissues. In this work, attention was paid primarily to the chondrogenic differentiation by focusing on the development of polymeric systems that provide biomolecules release to induce chondrogenic differentiation. For that, different formulations of insulin-loaded chitosan particle–aggregated scaffolds were developed as a potential model system for cartilage and osteochondral tissue engineering applications using insulin as a potent bioactive substance known to induce chondrogenic differentiation. The insulin encapsulation efficiency was shown to be high with values of 70.37!0.8%, 84.26!1.76%, and 87.23!1.58% for loadings of 0.05%, 0.5%, and 5%, respectively. The in vitro release profiles were assessed in physiological conditions mimicking the cell culture procedures and quantified by Micro-BCA! protein assay. Different release profiles were obtained that showed to be dependent on the initial insulin-loading percentage. Further, the effect on prechondrogenic ATDC5 cells was investigated for periods up to 4 weeks by studying the influence of these release systems on cell morphology, DNA and glycosaminoglycan content, histology, and gene expression of collagen types I and II, Sox-9, and aggrecan assessed by real-time polymerase chain reaction. When compared with control conditions (unloaded scaffolds cultured with the standard chondrogenic-inducing medium), insulin-loaded scaffolds upregulated the Sox-9 and aggrecan expression after 4 weeks of culture. From the overall results, it is reasonable to conclude that the developed loaded scaffolds when seeded with ATDC5 can provide biochemical cues for chondrogenic differentiation. Among the tested formulations, the higher insulin-loaded system (5%) was the most effective in promoting chondrogenic differentiation.The authors would like to acknowledge the Portuguese Foundation for Science and Technology for the Ph. D. Grant to Patricia B. Malafaya (SFRH/BD/11155/2002). This work was partially supported and carried out under the scope of the European STREP Project HIPPOCRATES (NMP3-CT-2003-505758) and European NoE EXPERTISSUES (NMP3CT-2004-500283). The authors also like to acknowledge the Life and Health Sciences Research Institute (ICVS), University of Minho, for the use of their facilities, namely, to Luis Martins for histological sections slicing and H&E stain processing

    Benefits of spine stabilization with biodegradable scaffolds in spinal cord injured rats

    Get PDF
    Spine stabilization upon spinal cord injury (SCI) is a standard procedure in clinical practice, but rarely employed in experimental models. Moreover, the application of biodegradable biomaterials for this would come as an advantage as it would eliminate the presence of a nondegradable prosthesis within the vertebral bone. Therefore, in the present work, we propose the use of a new biodegradable device specifically developed for spine stabilization in a rat model of SCI. A 3D scaffold based on a blend of starch with polycaprolactone was implanted, replacing delaminated vertebra, in male Wistar rats with a T8-T9 spinal hemisection. The impact of spinal stabilization on the locomotor behavior was then evaluated for a period of 12 weeks. Locomotor evaluation—assessed by Basso, Beatie, and Bresnahan test; rotarod; and open field analysis—revealed that injured rats subjected to spine stabilization significantly improved their motor performance, including higher coordination and rearing activity when compared with SCI rats without stabilization. Histological analysis further revealed that the presence of the scaffolds not only stabilized the area, but also simultaneously prevented the infiltration of the injury site by connective tissue. Overall, these results reveal that SCI stabilization using a biodegradable scaffold at the vertebral bone level leads to an improvement of the motor deficits and is a relevant element for the successful treatment of SCI.The authors would like to acknowledge the Portuguese Foundation for Science and Technology (Doctoral fellowship to Nuno Silva, SFRH/BD/40684/2007; Ciência 2007 Program to António Salgado; Grant N PTDC/SAU-BMA/114059/2009) and the Foundation Calouste de Gulbenkian to funds attributed to A.J. Salgado under the scope of the The Gulbenkian Programme to Support Cutting Edge Research in the Life Sciences

    Chitosan scaffolds incorporating lysozyme into CaP coatings produced by a biomimetic route : a novel concept for tissue engineering combining a self-regulated degradation system with in situ pore formation

    Get PDF
    This study describes an innovative self-regulated degrading material with gradual in situ pore formation ability for bone tissue engineering applications. This approach is based on the incorporation of the lysozyme enzyme into calcium phosphate (CaP) coatings, prepared on the surface of chitosan scaffolds by means of a biomimetic coating technique with the aim of controlling their degradation rate and subsequent formation of pores. However, because lysozyme has antibacterial properties, these coatings may act as a carrier for its sustained release, preventing infection upon implantation. In order to prove the concept of in situ pore formation, the coated scaffolds (with and without lysozyme) were incubated in two different solutions at different pH to simulate normal physiological conditions (pH 7.4) and inflammatory response (pH 5). The weight loss and morphology of the scaffolds was monitored over time. At pH 7.4, the scaffolds remained more stable than at pH 5. The scaffolds incubated at pH 5 showed a rapid decrease in their initial weight, and scanning electron microscopy imaging revealed the formation of a highly porous structure. Furthermore, evaluation of the activity of the incorporated lysozyme revealed that the enzyme was able to hydrolyse the peptidoglycan of the bacteria cell walls (as detected by the decrease in optical density with time), indicating that the enzyme remained active after being incorporated into the CaP coating.This work was supported by the European NoE EXPERTISSUES (NMP3-CT-2004-500283), the European STREP HIPPOCRATES (NMP3-CT-2003-505758), the Portuguese Foundation for Science and Technology (FCT) through POCTI and/or FEDER programmes

    Cell adhesion and proliferation onto chitosan-based membranes treated by plasma surface modification

    Get PDF
    Surface properties play a vita role in the functioning of a biomaterial. Cellular adherence and growth onto biomaterials can be enhanced in biomaterial modifications of their surface. In this work, the cell behaviour on chitosan membranes modified by argon and nitron-plasma treatments was investigated. Characterization of the membranes was performed using atomic force microscopy, contact angle measurements, and X-ray photoelectron spectroscopy. Cytotoxicity assessment and direct contact assay were carried out for untreated and treated chitosan membranes using L929 fibroblast-like cells. Cell morphology and cell viability were assessed to evaluate the cell attachment and proliferation. Changes in terms of roughness, surface chemistry, and hydrophilicity/hydrophobic balance of chitosan-modified membranes were observed. Regarding cell studies, the findings revealed that the extracts of all membranes do not induce cytotoxicity effects. Moreover, the in vitro assays evidenced an improvement of the L929 adhesion, and attachment when compared to untreated chitosan membranes. overall, the data obtained clearly demonstrated that plasma treatments constitute an effective way of improving the biocompatibility of chitosan membranes towards to their use in biomedical applications.S. M. Luna acknowledges the support of the Programme Alssan - The European Union Programme of High Level Scholarships for Latin America (scholarship No E04M041362CO) and Silva SS acknowledge the support of the Portuguese Foundation for Science and Technology, (SFRH/BPD/45307/2008). This work was also partially supported by the European Union-funded - STREP project HIPPOCRATES (NMP3-CT-2003-505758) and was carried out under the scope of European NoE EXPERTISSUES (NMP3-CT-2004-500283)
    corecore