1,465 research outputs found
Recommended from our members
Aluminium distribution in ZSM-5 revisited: the role of Al-Al interactions
We present a theoretical study of the distribution of Al atoms in zeolite ZSM-5 with Si/Al=47, where we focus on the role of Al-Al interactions rather than on the energetics of Al/Si substitutions at individual sites. Using interatomic potential methods, we evaluate the energies of the full set of symmetrically independent configurations of Al siting in a Si94Al2O192 cell. The equilibrium Al distribution is determined by the interplay of two factors: the energetics of the Al/Si substitution at an individual site, which tends to populate particular T sites (e.g. the T14 site), and the Al-Al interaction, which at this Si/Al maximises Al-Al distances in agreement with Dempsey’s rule. However, it is found that the interaction energy changes approximately as the inverse of the square of the distance between the two Al atoms, rather than the inverse of the distance expected if this were merely charge repulsion. Moreover, we find that the anisotropic nature of the framework density plays an important role in determining the magnitude of the interactions, which are not simply dependent on Al-Al distances
Werner states and the two-spinors Heisenberg anti-ferromagnet
We ascertain, following ideas of Arnesen, Bose, and Vedral concerning thermal
entanglement [Phys. Rev. Lett. {\bf 87} (2001) 017901] and using the
statistical tool called {\it entropic non-triviality} [Lamberti, Martin,
Plastino, and Rosso, Physica A {\bf 334} (2004) 119], that there is a one to
one correspondence between (i) the mixing coefficient of a Werner state, on
the one hand, and (ii) the temperature of the one-dimensional Heisenberg
two-spin chain with a magnetic field along the axis, on the other one.
This is true for each value of below a certain critical value . The
pertinent mapping depends on the particular value one selects within such a
range
First Report of Homothallic Isolates of Phytophthora infestans in Commercial Potato Crops (Solanum tuberosum) in the Toluca Valley, Mexico
Phytophthora infestans causes severe symptoms of wilt disease on potato crops (Solanum tuberosum) in the Toluca Valley (Mexico)despite the use of fungicides. P. infestans oospores produced by sexual reproduction can survive in the soil for many years, resisting harsh environments
A simple example of "Quantum Darwinism": Redundant information storage in many-spin environments
As quantum information science approaches the goal of constructing quantum
computers, understanding loss of information through decoherence becomes
increasingly important. The information about a system that can be obtained
from its environment can facilitate quantum control and error correction.
Moreover, observers gain most of their information indirectly, by monitoring
(primarily photon) environments of the "objects of interest." Exactly how this
information is inscribed in the environment is essential for the emergence of
"the classical" from the quantum substrate. In this paper, we examine how
many-qubit (or many-spin) environments can store information about a single
system. The information lost to the environment can be stored redundantly, or
it can be encoded in entangled modes of the environment. We go on to show that
randomly chosen states of the environment almost always encode the information
so that an observer must capture a majority of the environment to deduce the
system's state. Conversely, in the states produced by a typical decoherence
process, information about a particular observable of the system is stored
redundantly. This selective proliferation of "the fittest information" (known
as Quantum Darwinism) plays a key role in choosing the preferred, effectively
classical observables of macroscopic systems. The developing appreciation that
the environment functions not just as a garbage dump, but as a communication
channel, is extending our understanding of the environment's role in the
quantum-classical transition beyond the traditional paradigm of decoherence.Comment: 21 pages, 6 figures, RevTex 4. Submitted to Foundations of Physics
(Asher Peres Festschrift
Sequestered Dark Matter
We show that hidden-sector dark matter is a generic feature of the type IIB
string theory landscape and that its lifetime may allow for a discovery through
the observation of very energetic gamma-rays produced in the decay. Throats or,
equivalently, conformally sequestered hidden sectors are common in flux
compactifications and the energy deposited in these sectors can be calculated
if the reheating temperature of the standard model sector is known. Assuming
that throats with various warp factors are available in the compact manifold,
we determine which throats maximize the late-time abundance of sequestered dark
matter. For such throats, this abundance agrees with cosmological data if the
standard model reheating temperature was 10^10 - 10^11 GeV. In two distinct
scenarios, the mass of dark matter particles, i.e. the IR scale of the throat,
is either around 10^5 GeV or around 10^10 GeV. The lifetime and the decay
channels of our dark matter candidates depend crucially on the fact that the
Klebanov-Strassler throat is supersymmetric. Furthermore, the details of
supersymmetry breaking both in the throat and in the visible sector play an
essential role. We identify a number of scenarios where this type of dark
matter can be discovered via gamma-ray observations.Comment: 36 pages, 3 figures; v2: references added, v3: introduction extended
and typos correcte
Pion light-cone wave function and pion distribution amplitude in the Nambu-Jona-Lasinio model
We compute the pion light-cone wave function and the pion quark distribution
amplitude in the Nambu-Jona-Lasinio model. We use the Pauli-Villars
regularization method and as a result the distribution amplitude satisfies
proper normalization and crossing properties. In the chiral limit we obtain the
simple results, namely phi_pi(x)=1 for the pion distribution amplitude, and
= -M / f_pi^2 for the second moment of the pion light-cone
wave function, where M is the constituent quark mass and f_pi is the pion decay
constant. After the QCD Gegenbauer evolution of the pion distribution amplitude
good end-point behavior is recovered, and a satisfactory agreement with the
analysis of the experimental data from CLEO is achieved. This allows us to
determine the momentum scale corresponding to our model calculation, which is
close to the value Q_0 = 313 MeV obtained earlier from the analogous analysis
of the pion parton distribution function. The value of is, after the
QCD evolution, around (400 MeV)^2. In addition, the model predicts a linear
integral relation between the pion distribution amplitude and the parton
distribution function of the pion, which holds at the leading-order QCD
evolution.Comment: mistake in Eq.(38) correcte
Spectral quark model and low-energy hadron phenomenology
We propose a spectral quark model which can be applied to low energy hadronic
physics. The approach is based on a generalization of the Lehmann
representation of the quark propagator. We work at the one-quark-loop level.
Electromagnetic and chiral invariance are ensured with help of the gauge
technique which provides particular solutions to the Ward-Takahashi identities.
General conditions on the quark spectral function follow from natural physical
requirements. In particular, the function is normalized, its all positive
moments must vanish, while the physical observables depend on negative moments
and the so-called log-moments. As a consequence, the model is made finite,
dispersion relations hold, chiral anomalies are preserved, and the twist
expansion is free from logarithmic scaling violations, as requested of a
low-energy model. We study a variety of processes and show that the framework
is very simple and practical. Finally, incorporating the idea of vector-meson
dominance, we present an explicit construction of the quark spectral function
which satisfies all the requirements. The corresponding momentum representation
of the resulting quark propagator exhibits only cuts on the physical axis, with
no poles present anywhere in the complex momentum space. The momentum-dependent
quark mass compares very well to recent lattice calculations. A large number of
predictions and relations can be deduced from our approach for such quantities
as the pion light-cone wave function, non-local quark condensate, pion
transition form factor, pion valence parton distribution function, etc.Comment: revtex, 24 pages, 3 figure
Free energy of colloidal particles at the surface of sessile drops
The influence of finite system size on the free energy of a spherical
particle floating at the surface of a sessile droplet is studied both
analytically and numerically. In the special case that the contact angle at the
substrate equals a capillary analogue of the method of images is
applied in order to calculate small deformations of the droplet shape if an
external force is applied to the particle. The type of boundary conditions for
the droplet shape at the substrate determines the sign of the capillary
monopole associated with the image particle. Therefore, the free energy of the
particle, which is proportional to the interaction energy of the original
particle with its image, can be of either sign, too. The analytic solutions,
given by the Green's function of the capillary equation, are constructed such
that the condition of the forces acting on the droplet being balanced and of
the volume constraint are fulfilled. Besides the known phenomena of attraction
of a particle to a free contact line and repulsion from a pinned one, we
observe a local free energy minimum for the particle being located at the drop
apex or at an intermediate angle, respectively. This peculiarity can be traced
back to a non-monotonic behavior of the Green's function, which reflects the
interplay between the deformations of the droplet shape and the volume
constraint.Comment: 24 pages, 19 figure
New 1-aryl-3-substituted propanol derivatives as antimalarial agents
This paper describes the synthesis and in vitro antimalarial activity against a P.
falciparum 3D7 strain of some new 1-aryl-3-substituted propanol derivatives. Twelve of
the tested compounds showed an IC50 lower than 1 μM. These compounds were also tested
for cytotoxicity in murine J774 macrophages. The most active compounds were evaluated
for in vivo activity against P. berghei in a 4-day suppressive test. Compound 12 inhibited
more than 50% of parasite growth at a dose of 50 mg/kg/day. In addition, an FBIT test was
performed to measure the ability to inhibit ferriprotoporphyrin biocrystallization. This data
indicates that 1-aryl-3-substituted propanol derivatives hold promise as a new therapeutic
option for the treatment of malaria
Magnetic Fields in the Milky Way
This chapter presents a review of observational studies to determine the
magnetic field in the Milky Way, both in the disk and in the halo, focused on
recent developments and on magnetic fields in the diffuse interstellar medium.
I discuss some terminology which is confusingly or inconsistently used and try
to summarize current status of our knowledge on magnetic field configurations
and strengths in the Milky Way. Although many open questions still exist, more
and more conclusions can be drawn on the large-scale and small-scale components
of the Galactic magnetic field. The chapter is concluded with a brief outlook
to observational projects in the near future.Comment: 22 pages, 5 figures, to appear in "Magnetic Fields in Diffuse Media",
eds. E.M. de Gouveia Dal Pino and A. Lazaria
- …
