3,600 research outputs found

    Shaping in Practice: Training Wheels to Learn Fast Hopping Directly in Hardware

    Full text link
    Learning instead of designing robot controllers can greatly reduce engineering effort required, while also emphasizing robustness. Despite considerable progress in simulation, applying learning directly in hardware is still challenging, in part due to the necessity to explore potentially unstable parameters. We explore the concept of shaping the reward landscape with training wheels: temporary modifications of the physical hardware that facilitate learning. We demonstrate the concept with a robot leg mounted on a boom learning to hop fast. This proof of concept embodies typical challenges such as instability and contact, while being simple enough to empirically map out and visualize the reward landscape. Based on our results we propose three criteria for designing effective training wheels for learning in robotics. A video synopsis can be found at https://youtu.be/6iH5E3LrYh8.Comment: Accepted to the IEEE International Conference on Robotics and Automation (ICRA) 2018, 6 pages, 6 figure

    Development and test of resistive superconducting fault current limiter; acting time and its recovery conditions

    Get PDF
    Resistive-type of superconducting fault current limiters (RSFCL) have been developed for medium voltage class aiming to operate at 1 MVA power capacity and short time recovery (< 2 s). A RSFCL in form of superconducting modular device was designed and constructed using 50 m-length of YBCO coated conductor tapes for operation under 1 kV / 1 kA and acting time of 0.1 s. In order to increase the acting time the RSFCL was combined with an air-core reactor in parallel to increase the fault limiting time up to 1 s. The tests determined the electrical and thermal characteristics of the combined resistive/ inductive protection unit. The combined fault current limiter reached a limiting current of 583 A, corresponding to a limiting factor of 3.3 times within an acting time of up to 1 s

    Intrinsically Legal-For-Trade Objects by Digital Signatures

    Full text link
    The established techniques for legal-for-trade registration of weight values meet the legal requirements, but in praxis they show serious disadvantages. We report on the first implementation of intrinsically legal-for-trade objects, namely weight values signed by the scale, that is accepted by the approval authority. The strict requirements from both the approval- and the verification-authority as well as the limitations due to the hardware of the scale were a special challenge. The presented solution fulfills all legal requirements and eliminates the existing practical disadvantages.Comment: 4 pages, 0 figure

    Jet-quenching in a 3D hydrodynamic medium

    Get PDF
    We study the radiative energy loss of hard partons in a soft medium in the multiple soft scattering approximation. The soft medium is described by a 3D hydrodynamical model and we treat the averaging over all possible parton paths through the medium without approximation. While the nuclear suppression factor RAAR_{AA} does not reflect the high quality of the medium description (except in a reduced systematic uncertainty in extracting the quenching power of the medium), the hydrodynamical model also allows to study different centralities and in particular the angular variation of RAAR_{AA} with respect to the reaction plane, allowing for a controlled variation of the in-medium path-length. We study the angular dependence of RAAR_{AA} for different centralities, discuss the influence of hydrodynamical expansion and flow and comment on the comparison with preliminary data.Comment: 5 pages, 6 figures, revised version with minor modification

    Properties of the phi meson at high temperatures and densities

    Full text link
    We calculate the spectral density of the phi meson in a hot bath of nucleons and pions using a general formalism relating self-energy to the forward scattering amplitude (FSA). In order to describe the low energy FSA, we use experimental data along with a background term. For the high energy FSA, a Regge parameterization is employed. We verify the resulting FSA using dispersion techniques. We find that the position of the peak of the spectral density is slightly shifted from its vacuum position and that its width is considerably increased. The width of the spectral density at a temperature of 150 MeV and at normal nuclear density is more than 90 MeV.Comment: 4 pages, 5 figures, Poster presented at Quark Matter 200
    corecore