959 research outputs found
Who bullies whom at a garden feeder? Interspecific agonistic interactions of small passerines during a cold winter
Interspecific agonistic interactions are important
selective factors for maintaining ecological niches of
different species, but their outcome is difficult to predict
a priori. Here, we examined the direction and intensity of
interspecific interactions in an assemblage of small passerines
at a garden feeder, focussing on three finch species
of various body sizes. We found that large and mediumsized
birds usually initiated and won agonistic interactions
with smaller species. Also, the frequency of fights increased
with decreasing differences in body size between
the participants. Finally, the probability of engaging in a
fight increased with the number of birds at the feeder
Upper atmospheres and ionospheres of planets and satellites
The upper atmospheres of the planets and their satellites are more directly
exposed to sunlight and solar wind particles than the surface or the deeper
atmospheric layers. At the altitudes where the associated energy is deposited,
the atmospheres may become ionized and are referred to as ionospheres. The
details of the photon and particle interactions with the upper atmosphere
depend strongly on whether the object has anintrinsic magnetic field that may
channel the precipitating particles into the atmosphere or drive the
atmospheric gas out to space. Important implications of these interactions
include atmospheric loss over diverse timescales, photochemistry and the
formation of aerosols, which affect the evolution, composition and remote
sensing of the planets (satellites). The upper atmosphere connects the planet
(satellite) bulk composition to the near-planet (-satellite) environment.
Understanding the relevant physics and chemistry provides insight to the past
and future conditions of these objects, which is critical for understanding
their evolution. This chapter introduces the basic concepts of upper
atmospheres and ionospheres in our solar system, and discusses aspects of their
neutral and ion composition, wind dynamics and energy budget. This knowledge is
key to putting in context the observations of upper atmospheres and haze on
exoplanets, and to devise a theory that explains exoplanet demographics.Comment: Invited Revie
Recurrence in 2D Inviscid Channel Flow
I will prove a recurrence theorem which says that any () solution
to the 2D inviscid channel flow returns repeatedly to an arbitrarily small
neighborhood. Periodic boundary condition is imposed along the
stream-wise direction. The result is an extension of an early result of the
author [Li, 09] on 2D Euler equation under periodic boundary conditions along
both directions
Dynamical Patterns of Cattle Trade Movements
Despite their importance for the spread of zoonotic diseases, our
understanding of the dynamical aspects characterizing the movements of farmed
animal populations remains limited as these systems are traditionally studied
as static objects and through simplified approximations. By leveraging on the
network science approach, here we are able for the first time to fully analyze
the longitudinal dataset of Italian cattle movements that reports the mobility
of individual animals among farms on a daily basis. The complexity and
inter-relations between topology, function and dynamical nature of the system
are characterized at different spatial and time resolutions, in order to
uncover patterns and vulnerabilities fundamental for the definition of targeted
prevention and control measures for zoonotic diseases. Results show how the
stationarity of statistical distributions coexists with a strong and
non-trivial evolutionary dynamics at the node and link levels, on all
timescales. Traditional static views of the displacement network hide important
patterns of structural changes affecting nodes' centrality and farms' spreading
potential, thus limiting the efficiency of interventions based on partial
longitudinal information. By fully taking into account the longitudinal
dimension, we propose a novel definition of dynamical motifs that is able to
uncover the presence of a temporal arrow describing the evolution of the system
and the causality patterns of its displacements, shedding light on mechanisms
that may play a crucial role in the definition of preventive actions
Dynamical Patterns of Cattle Trade Movements
Despite their importance for the spread of zoonotic diseases, our
understanding of the dynamical aspects characterizing the movements of farmed
animal populations remains limited as these systems are traditionally studied
as static objects and through simplified approximations. By leveraging on the
network science approach, here we are able for the first time to fully analyze
the longitudinal dataset of Italian cattle movements that reports the mobility
of individual animals among farms on a daily basis. The complexity and
inter-relations between topology, function and dynamical nature of the system
are characterized at different spatial and time resolutions, in order to
uncover patterns and vulnerabilities fundamental for the definition of targeted
prevention and control measures for zoonotic diseases. Results show how the
stationarity of statistical distributions coexists with a strong and
non-trivial evolutionary dynamics at the node and link levels, on all
timescales. Traditional static views of the displacement network hide important
patterns of structural changes affecting nodes' centrality and farms' spreading
potential, thus limiting the efficiency of interventions based on partial
longitudinal information. By fully taking into account the longitudinal
dimension, we propose a novel definition of dynamical motifs that is able to
uncover the presence of a temporal arrow describing the evolution of the system
and the causality patterns of its displacements, shedding light on mechanisms
that may play a crucial role in the definition of preventive actions
Graphene plasmonics
Two rich and vibrant fields of investigation, graphene physics and
plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons
that are tunable and adjustable, but a combination of graphene with noble-metal
nanostructures promises a variety of exciting applications for conventional
plasmonics. The versatility of graphene means that graphene-based plasmonics
may enable the manufacture of novel optical devices working in different
frequency ranges, from terahertz to the visible, with extremely high speed, low
driving voltage, low power consumption and compact sizes. Here we review the
field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version
available only at publisher's web site
Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses
The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined
Effects of strategies to promote children\u27s physical activity on potential mediators
The aim of this paper is to review evidence of the effectiveness of interventions that present physical activity outcomes and potential mediators of behavioural change among 4–12-year-old children. A systematic search of electronic databases for original research articles published in peer-review journals between January 1985 and the end of June 2006 was carried out. A total of 19 studies that reported intervention effects on physical activity and mediators of behavioural change were identified. The most common mediators reported included physical activity knowledge or beliefs (11 studies); self-efficacy (8 studies); and enjoyment or preference for physical activity (6 studies). Less frequently reported mediators included attitudes, behavioural capability, intentions, outcome expectancies, social norms, social support and self-concept. Seven of the 11 interventions that reported intervention effects on knowledge/beliefs stated positive changes in this mediator. Four of the eight studies that reported intervention effects on self-efficacy had significant improvements; however, only two out of six interventions reported significant improvements in physical activity enjoyment or preference. None of the studies reviewed reported whether changes in these constructs mediated changes in children\u27s physical activity behaviours. Although more than half of the studies reviewed reported a positive intervention effect on children\u27s physical activity, no study carried out a mediating analysis to attempt to identify the mechanisms of change. Future research should more clearly identify the mediators of behavioural change that are being targeted and whether this explains intervention effects.<br /
Individual rules for trail pattern formation in Argentine ants (Linepithema humile)
We studied the formation of trail patterns by Argentine ants exploring an
empty arena. Using a novel imaging and analysis technique we estimated
pheromone concentrations at all spatial positions in the experimental arena and
at different times. Then we derived the response function of individual ants to
pheromone concentrations by looking at correlations between concentrations and
changes in speed or direction of the ants. Ants were found to turn in response
to local pheromone concentrations, while their speed was largely unaffected by
these concentrations. Ants did not integrate pheromone concentrations over
time, with the concentration of pheromone in a 1 cm radius in front of the ant
determining the turning angle. The response to pheromone was found to follow a
Weber's Law, such that the difference between quantities of pheromone on the
two sides of the ant divided by their sum determines the magnitude of the
turning angle. This proportional response is in apparent contradiction with the
well-established non-linear choice function used in the literature to model the
results of binary bridge experiments in ant colonies (Deneubourg et al. 1990).
However, agent based simulations implementing the Weber's Law response function
led to the formation of trails and reproduced results reported in the
literature. We show analytically that a sigmoidal response, analogous to that
in the classical Deneubourg model for collective decision making, can be
derived from the individual Weber-type response to pheromone concentrations
that we have established in our experiments when directional noise around the
preferred direction of movement of the ants is assumed.Comment: final version, 9 figures, submitted to Plos Computational Biology
(accepted
Translation invariant extensions of finite volume measures
We investigate the following questions: Given a measure μΛ on configurations on a subset Λ of a lattice L, where a configuration is an element of ΩΛ for some fixed set Ω, does there exist a measure μ on configurations on all of L, invariant under some specified symme- try group of L, such that μΛ is its marginal on configurations on Λ? When the answer is yes, what are the properties, e.g., the entropies, of such measures? Our primary focus is the case in which L = Zd and the symmetries are the translations. For the case in which Λ is an interval in Z we give a simple necessary and sufficient condition, local translation invariance (LTI), for extendibility. For LTI measures we construct extensions having maximal entropy, which we show are Gibbs measures; this construction extends to the case in which L is the Bethe lattice. On Z we also consider extensions supported on periodic configurations, which are analyzed using de Bruijn graphs and which include the extensions with minimal entropy. When Λ ⊂ Z is not an interval, or when Λ ⊂ Zd with d > 1, the LTI condition is necessary but not sufficient for extendibility. For Zd with d > 1, extendibility is in some sense undecidable
- …
