29 research outputs found

    DNA-PK-Dependent RPA2 Hyperphosphorylation Facilitates DNA Repair and Suppresses Sister Chromatid Exchange

    Get PDF
    Hyperphosphorylation of RPA2 at serine 4 and serine 8 (S4, S8) has been used as a marker for activation of the DNA damage response. What types of DNA lesions cause RPA2 hyperphosphorylation, which kinase(s) are responsible for them, and what is the biological outcome of these phosphorylations, however, have not been fully investigated. In this study we demonstrate that RPA2 hyperphosphorylation occurs primarily in response to genotoxic stresses that cause high levels of DNA double-strand breaks (DSBs) and that the DNA-dependent protein kinase complex (DNA-PK) is responsible for the modifications in vivo. Alteration of S4, S8 of RPA2 to alanines, which prevent phosphorylations at these sites, caused increased mitotic entry with concomitant increases in RAD51 foci and homologous recombination. Taken together, our results demonstrate that RPA2 hyperphosphorylation by DNA-PK in response to DSBs blocks unscheduled homologous recombination and delays mitotic entry. This pathway thus permits cells to repair DNA damage properly and increase cell viability

    Rescue of replication failure by Fanconi anaemia proteins

    Get PDF
    Chromosomal aberrations are often associated with incomplete genome duplication, for instance at common fragile sites, or as a consequence of chemical alterations in the DNA template that block replication forks. Studies of the cancer-prone disease Fanconi anaemia (FA) have provided important insights into the resolution of replication problems. The repair of interstrand DNA crosslinks induced by chemotherapy drugs is coupled with DNA replication and controlled by FA proteins. We discuss here the recent discovery of new FA-associated proteins and the development of new tractable repair systems that have dramatically improved our understanding of crosslink repair. We focus also on how FA proteins protect against replication failure in the context of fragile sites and on the identification of reactive metabolites that account for the development of Fanconi anaemia symptoms

    The hnRNP family: insights into their role in health and disease

    Get PDF
    Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins (RBPs) that contribute to multiple aspects of nucleic acid metabolism including alternative splicing, mRNA stabilization, and transcriptional and translational regulation. Many hnRNPs share general features, but differ in domain composition and functional properties. This review will discuss the current knowledge about the different hnRNP family members, focusing on their structural and functional divergence. Additionally, we will highlight their involvement in neurodegenerative diseases and cancer, and the potential to develop RNA-based therapies

    Differential response of normal and malignant urothelial cells to CHK1 and ATM inhibitors

    No full text
    While DNA damage response pathways are well characterized in cancer cells, much less is known about their status in normal cells. These pathways protect tumour cells from DNA damage and replication stress and consequently present potential therapeutic targets. Here we characterize the response of human telomerase reverse transcriptase (hTERT)-immortalized normal human urothelial (NHU) and bladder cancer cell lines to agents that disrupt the DNA damage response. Effects of replication and DNA damage response inhibitors on cell cycle progression, checkpoint induction and apoptosis were analysed in hTERT-NHU and bladder cancer cell lines. The primary signalling cascade responding to replication stress in malignant cells (ataxia telangiectasia-mutated (ATM) and Rad3-related-checkpoint kinase 1 (ATR-CHK1)) is not activated in hTERT-NHU cells after treatment with a replication inhibitor and these cells do not depend upon CHK1 for protection from apoptosis during replication stress. Instead, ATM signalling is rapidly activated under these conditions. Intriguingly, an ATM inhibitor suppressed S-phase checkpoint activation after exposure to replication inhibitors and stopped entry of cells into S-phase indicating G1 checkpoint activation. Consistent with this, hTERT-NHU cells treated with the ATM inhibitor showed increased levels of cyclin-dependent kinase inhibitor p19 INK4D, reduced levels of cyclin D1 and CDK4, and reduced phosphorylation of the retinoblastoma protein. In contrast, a bladder cancer cell line cotreated with ATM and replication inhibitors progressed more slowly through S phase and showed a marked increase in apoptosis. Taken together, our findings suggest that ATM and CHK1 signalling cascades have different roles in tumour and normal epithelial cells, confirming these as promising therapeutic targets
    corecore