15 research outputs found

    Ancient Nursery Area for the Extinct Giant Shark Megalodon from the Miocene of Panama

    Get PDF
    BACKGROUND: As we know from modern species, nursery areas are essential shark habitats for vulnerable young. Nurseries are typically highly productive, shallow-water habitats that are characterized by the presence of juveniles and neonates. It has been suggested that in these areas, sharks can find ample food resources and protection from predators. Based on the fossil record, we know that the extinct Carcharocles megalodon was the biggest shark that ever lived. Previous proposed paleo-nursery areas for this species were based on the anecdotal presence of juvenile fossil teeth accompanied by fossil marine mammals. We now present the first definitive evidence of ancient nurseries for C. megalodon from the late Miocene of Panama, about 10 million years ago. METHODOLOGY/PRINCIPAL FINDINGS: We collected and measured fossil shark teeth of C. megalodon, within the highly productive, shallow marine Gatun Formation from the Miocene of Panama. Surprisingly, and in contrast to other fossil accumulations, the majority of the teeth from Gatun are very small. Here we compare the tooth sizes from the Gatun with specimens from different, but analogous localities. In addition we calculate the total length of the individuals found in Gatun. These comparisons and estimates suggest that the small size of Gatun's C. megalodon is neither related to a small population of this species nor the tooth position within the jaw. Thus, the individuals from Gatun were mostly juveniles and neonates, with estimated body lengths between 2 and 10.5 meters. CONCLUSIONS/SIGNIFICANCE: We propose that the Miocene Gatun Formation represents the first documented paleo-nursery area for C. megalodon from the Neotropics, and one of the few recorded in the fossil record for an extinct selachian. We therefore show that sharks have used nursery areas at least for 10 millions of years as an adaptive strategy during their life histories

    A Gigantic Shark from the Lower Cretaceous Duck Creek Formation of Texas

    Get PDF
    Author Contributions Conceived and designed the experiments: JAF SNS JAD-F. Analyzed the data: JAF SNS. Wrote the paper: JAF SNS. Site data for OMNH V1727 are available by request from the department of vert. paleontology at the (SN)OMNH.Three large lamniform shark vertebrae are described from the Lower Cretaceous of Texas. We interpret these fossils as belonging to a single individual with a calculated total body length of 6.3 m. This large individual compares favorably to another shark specimen from the roughly contemporaneous Kiowa Shale of Kansas. Neither specimen was recovered with associated teeth, making confident identification of the species impossible. However, both formations share a similar shark fauna, with Leptostyrax macrorhiza being the largest of the common lamniform sharks. Regardless of its actual identification, this new specimen provides further evidence that large-bodied lamniform sharks had evolved prior to the Late Cretaceous.Ye

    Electroreception in elasmobranchs: sawfish as a case study

    No full text
    The ampullae of Lorenzini are the electroreceptors of elasmobranchs. Ampullary pores located in the elasmobranch skin are each connected to a gel-filled canal that ends in an ampullary bulb, in which the sensory epithelium is located. Each ampulla functions as an independent receptor that measures the potential difference between the ampullary pore opening and the body interior. In the elasmobranch head, the ampullary bulbs of different ampullae are aggregated in 3–6 bilaterally symmetric clusters, which can be surrounded by a connective tissue capsule. Each cluster is innervated by one branch of the anterior lateral line nerve (ALLN). Only the dorsal root of the ALLN carries electrosensory fibers, which terminate in the dorsal octavo-lateral nucleus (DON) of the medulla. Each ampullary cluster projects into a distinctive area in the central zone of the DON, where projection areas are somatotopically arranged. Sharks and rays can possess thousands of ampullae. Amongst other functions, the use of electroreception during prey localization is well documented. The distribution of ampullary pores in the skin of elasmobranchs is influenced by both the phylogeny and ecology of a species. Pores are grouped in distinct pore fields, which remain recognizable amongst related taxa. However, the density of pores within a pore field, which determines the electroreceptive resolution, is influenced by the ecology of a species. Here, I compare the pore counts per pore field between rhinobatids (shovelnose rays) and pristids (sawfish). In both groups, the number of ampullary pores on the ventral side of the rostrum is similar, even though the pristid rostrum can comprise about 20% of the total length. Ampullary pore numbers in pristids are increased on the upper side of the rostrum, which can be related to a feeding strategy that targets free-swimming prey in the water column. Shovelnose rays pin their prey onto the substrate with their disk, while repositioning their mouth for ingestion and thus possess large numbers of pores ventrally around the mouth and in the area between the gills

    Sharks, rays and skates (Chondrichthyes, Elasmobranchii) from the Upper Marine Molasse (middle Burdigalian, early Miocene) of the Simssee area (Bavaria, Germany), with comments on palaeogeographic and ecological patterns

    No full text
    corecore