9,176 research outputs found
Manipulation Strategies for the Rank Maximal Matching Problem
We consider manipulation strategies for the rank-maximal matching problem. In
the rank-maximal matching problem we are given a bipartite graph such that denotes a set of applicants and a set of posts. Each
applicant has a preference list over the set of his neighbours in
, possibly involving ties. Preference lists are represented by ranks on the
edges - an edge has rank , denoted as , if post
belongs to one of 's -th choices. A rank-maximal matching is one in which
the maximum number of applicants is matched to their rank one posts and subject
to this condition, the maximum number of applicants is matched to their rank
two posts, and so on. A rank-maximal matching can be computed in time, where denotes the number of applicants, the
number of edges and the maximum rank of an edge in an optimal solution.
A central authority matches applicants to posts. It does so using one of the
rank-maximal matchings. Since there may be more than one rank- maximal matching
of , we assume that the central authority chooses any one of them randomly.
Let be a manipulative applicant, who knows the preference lists of all
the other applicants and wants to falsify his preference list so that he has a
chance of getting better posts than if he were truthful. In the first problem
addressed in this paper the manipulative applicant wants to ensure that
he is never matched to any post worse than the most preferred among those of
rank greater than one and obtainable when he is truthful. In the second problem
the manipulator wants to construct such a preference list that the worst post
he can become matched to by the central authority is best possible or in other
words, wants to minimize the maximal rank of a post he can become matched
to
Recommended from our members
Polaronic effect in the x-ray absorption spectra of La1-x Ca x MnO3 manganites.
X-ray absorption spectroscopy (XAS) is performed to study changes in the electronic structures of colossal magnetoresistance (CMR) and charged ordered (CO) La1-x Ca x MnO3 manganites with respect to temperature. The pre-edge features in O and Mn K-edge XAS spectra, which are highly sensitive to the local distortion of MnO6 octahedral, exhibit contrasting temperature dependence between CMR and CO samples. The seemingly counter-intuitive XAS temperature dependence can be reconciled in the context of polarons. These results help identify the most relevant orbital states associated with polarons and highlight the crucial role played by polarons in understanding the electronic structures of manganites
Recommended from our members
Soft X-ray seeding studies for the SLAC Linac Coherent Light Source II
We present the results from studies of soft X-ray seeding options for the LCLS-II X-ray free electron laser (FEL) at SLAC. The LCLS-II will use superconducting accelerator technology to produce X-ray pulses at up to 1 MHz repetition rate using 4 GeV electron beams. If properly seeded, these pulses will be nearly fully coherent, and highly stable in photon energy, bandwidth, and intensity, thus enabling unique experiments with intense high-resolution soft X-rays. Given the expected electron beam parameters from start to end simulations and predicted FEL performance, our studies reveal echo enabled harmonic generation (EEHG) and soft X-ray self-seeding (SXRSS) as promising and complementary seeding methods. We find that SXRSS has the advantage of simplicity and will deliver 5-35 times higher spectral brightness than EEHG in the 1-2 nm range, but lacks some of the potential for phase-stable multipulse and multicolor FEL operations enabled by external laser seeding with EEHG
Genetic analysis of self-associating immunoglobulin G rheumatoid factors from two rheumatoid synovia implicates an antigen-driven response.
Although much has been learned about the molecular basis of immunoglobulin M (IgM) rheumatoid factors (RFs) in healthy individuals and in patients with mixed cryoglobulinemia and rheumatoid arthritis, little is known about the genetic origins of the potentially pathogenic IgG RFs in the inflamed rheumatoid synovia of patients. Recently, we generated from unmanipulated synovium B cells several hybridomas that secreted self-associating IgG RFs. To delineate the genetic origins of such potentially pathogenic RFs, we adapted the anchored polymerase chain reaction to rapidly clone and characterize the expressed Ig V genes for the L1 and the D1 IgG RFs. Then, we identified the germline counterparts of the expressed L1 IgG RF V genes. The results showed that the L1 heavy chain was encoded by a Vh gene that is expressed preferentially during early ontogenic development, and that is probably located within 240 kb upstream of the Jh locus. The overlap between this RF Vh gene and the restricted fetal antibody repertoire is reminiscent of the natural antibody-associated Vh genes, and suggests that at least part of the "potential pathogenic" IgG RFs in rheumatoid synovium may derive from the "physiological" natural antibody repertoire in a normal immune system. Indeed, the corresponding germline Vh gene for L1 encodes the heavy chain of an IgM RF found in a 19-wk-old fetal spleen. Furthermore, the comparisons of the expressed RF V genes and their germline counterparts reveal that the L1 heavy and light chain variable regions had, respectively, 16 and 7 somatic mutations, which resulted in eight and four amino acid changes. Strikingly, all eight mutations in the complementarity determining regions of the V gene-encoded regions were replacement changes, while only 6 of 11 mutations in the framework regions caused amino acid changes. Combined with L1's high binding affinity toward the Fc fragment, these results suggest strongly that the L1 IgG RF must have been driven by the Fc antigen
Quantifying measures to limit wind driven resuspension of sediments for improvement of the ecological quality in some shallow Dutch lakes
Although phosphorus loadings are considered the main pressure for most shallow lakes, wind-driven resuspension can cause additional problems for these aquatic ecosystems. We quantified the potential effectiveness of measures to reduce the contribution of resuspended sediments, resulting from wind action, to the overall light attenuation for three comparable shallow peat lakes with poor ecological status in the Netherlands: Loosdrecht, Nieuwkoop, and Reeuwijk (1.8–2.7 m depth, 1.6–2.5 km fetch). These measures are: 1. wave reducing barriers, 2. water level fluctuations, 3. capping of the sediment with sand, and 4. combinations of above. Critical shear stress of the sediments for resuspension (Vcrit), size distribution, and optical properties of the suspended material were quantified in the field (June 2009) and laboratory. Water quality monitoring data (2002–2009) showed that light attenuation by organic suspended matter in all lakes is high. Spatial modeling of the impact of these measures showed that in Lake Loosdrecht limiting wave action can have significant effects (reductions from 6% exceedance to 2% exceedance of Vcrit), whereas in Lake Nieuwkoop and Lake Reeuwijk this is less effective. The depth distribution and shape of Lake Nieuwkoop and Lake Reeuwijk limit the role of wind-driven resuspension in the total suspended matter concentration. Although the lakes are similar in general appearance (origin, size, and depth range) measures suitable to improve their ecological status differ. This calls for care when defining the programme of measures to improve the ecological status of a specific lake based on experience from other lakes.
Human Bocavirus NS1 and NS1-70 Proteins Inhibit TNF-α-Mediated Activation of NF-κB by targeting p65.
Human bocavirus (HBoV), a parvovirus, is a single-stranded DNA etiologic agent causing lower respiratory tract infections in young children worldwide. Nuclear factor kappa B (NF-κB) transcription factors play crucial roles in clearance of invading viruses through activation of many physiological processes. Previous investigation showed that HBoV infection could significantly upregulate the level of TNF-α which is a strong NF-κB stimulator. Here we investigated whether HBoV proteins modulate TNF-α-mediated activation of the NF-κB signaling pathway. We showed that HBoV NS1 and NS1-70 proteins blocked NF-κB activation in response to TNF-α. Overexpression of TNF receptor-associated factor 2 (TRAF2)-, IκB kinase alpha (IKKα)-, IκB kinase beta (IKKβ)-, constitutively active mutant of IKKβ (IKKβ SS/EE)-, or p65-induced NF-κB activation was inhibited by NS1 and NS1-70. Furthermore, NS1 and NS1-70 didn't interfere with TNF-α-mediated IκBα phosphorylation and degradation, nor p65 nuclear translocation. Coimmunoprecipitation assays confirmed the interaction of both NS1 and NS1-70 with p65. Of note, NS1 but not NS1-70 inhibited TNF-α-mediated p65 phosphorylation at ser536. Our findings together indicate that HBoV NS1 and NS1-70 inhibit NF-κB activation. This is the first time that HBoV has been shown to inhibit NF-κB activation, revealing a potential immune-evasion mechanism that is likely important for HBoV pathogenesis
Serial optical coherence microscopy for label-free volumetric histopathology
The observation of histopathology using optical microscope is an essential procedure for examination of tissue biopsies or surgically excised specimens in biological and clinical laboratories. However, slide-based microscopic pathology is not suitable for visualizing the large-scale tissue and native 3D organ structure due to its sampling limitation and shallow imaging depth. Here, we demonstrate serial optical coherence microscopy (SOCM) technique that offers label-free, high-throughput, and large-volume imaging of ex vivo mouse organs. A 3D histopathology of whole mouse brain and kidney including blood vessel structure is reconstructed by deep tissue optical imaging in serial sectioning techniques. Our results demonstrate that SOCM has unique advantages as it can visualize both native 3D structures and quantitative regional volume without introduction of any contrast agents
How consistent are the transcriptome changes associated with cold acclimation in two species of the Drosophila virilis group?
This work was financially support by a Marie Curie Initial Training Network grant, “Understanding the evolutionary origin of biological diversity” (ITN-2008–213780 SPECIATION), grants from the Academy of Finland to A.H. (project 132619) and M.K. (projects 268214 and 272927), a grant from NERC, UK to M.G.R. (grant NE/J020818/1), and NERC, UK PhD studentship to D.J.P. (NE/I528634/1).For many organisms the ability to cold acclimate with the onset of seasonal cold has major implications for their fitness. In insects, where this ability is widespread, the physiological changes associated with increased cold tolerance have been well studied. Despite this, little work has been done to trace changes in gene expression during cold acclimation that lead to an increase in cold tolerance. We used an RNA-Seq approach to investigate this in two species of the Drosophila virilis group. We found that the majority of genes that are differentially expressed during cold acclimation differ between the two species. Despite this, the biological processes associated with the differentially expressed genes were broadly similar in the two species. These included: metabolism, cell membrane composition, and circadian rhythms, which are largely consistent with previous work on cold acclimation/cold tolerance. In addition, we also found evidence of the involvement of the rhodopsin pathway in cold acclimation, a pathway that has been recently linked to thermotaxis. Interestingly, we found no evidence of differential expression of stress genes implying that long-term cold acclimation and short-term stress response may have a different physiological basis.PostprintPeer reviewe
What do -ray bursts look like?
There have been great and rapid progresses in the field of -ray
bursts (denoted as GRBs) since BeppoSAX and other telescopes discovered their
afterglows in 1997. Here, we will first give a brief review on the
observational facts of GRBs and direct understanding from these facts, which
lead to the standard fireball model. The dynamical evolution of the fireball is
discussed, especially a generic model is proposed to describe the whole
dynamical evolution of GRB remnant from highly radiative to adiabatic, and from
ultra-relativistic to non-relativistic phase. Then, Various deviations from the
standard model are discussed to give new information about GRBs and their
environment. In order to relax the energy crisis, the beaming effects and their
possible observational evidences are also discussed in GRB's radiations.Comment: 10 pages, Latex. Invited talk at the Pacific Rim Conference on
Stellar Astrophysics, Hong Kong, China, Aug. 199
Varus inclination of the proximal tibia or the distal femur does not influence high tibial osteotomy outcome
We have analysed retrospectively the influence of different sources of knee deformity on failure of closing wedge high tibial valgus osteotomy (HTO). Preoperative frontal plane varus deformities of the lower extremity, distal femur and proximal tibia, and medial convergence of the knee joint line were assessed on a standard whole leg radiograph in 76 patients. Using the logistic regression model, the probability of survival for HTO was 77% (SD 4%) at 10-years follow-up. Varus deformity of the lower extremity ( 3 degrees ) were identified as preoperative risk factors for conversion to arthroplasty (P = 0.03 and P = 0.006). We found no evidence that varus inclination of the proximal tibia or distal femur influences long-term survival of HTO
- …
