9,991 research outputs found

    Longitudinal Atomic Beam Spin Echo Experiments: A possible way to study Parity Violation in Hydrogen

    Full text link
    We discuss the propagation of hydrogen atoms in static electric and magnetic fields in a longitudinal atomic beam spin echo (lABSE) apparatus. Depending on the choice of the external fields the atoms may acquire both dynamical and geometrical quantum mechanical phases. As an example of the former, we show first in-beam spin rotation measurements on atomic hydrogen, which are in excellent agreement with theory. Additional calculations of the behaviour of the metastable 2S states of hydrogen reveal that the geometrical phases may exhibit the signature of parity-(P-)violation. This invites for possible future lABSE experiments, focusing on P-violating geometrical phases in the lightest of all atoms.Comment: 6 pages, 4 figure

    Integration and Operation of an Electrically Small Magnetic EZ Antenna With a High-Power Standing Wave Oscillator Source

    Full text link
    © 2015 IEEE. The efficacy of the three-dimensional, rectangular magnetic EZ antenna for use with mesoband high-power microwave (HPM) sources has been demonstrated previously. It overcomes the typical bulky and massive impedance-matching components found currently in most HPM systems, making it an attractive option when space is very limited. However, its extremely compact nature presents practical challenges when dealing with extremely high-power sources due to the associated local field enhancements near the feed and the near-field resonant parasitic element. This letter presents a fully integrated, high-voltage source and radiating system that has several improvements in the antenna, source, and power system that have not before been demonstrated. The full system includes a ferroelectric generator, standing wave oscillator source, and electrically small antenna (ka = 0.37) operating at 510 MHz that can be packaged inside a 15-cm-diameter tube. This small diameter results in a quarter-wavelength-diameter ground plane, and the effects of this small ground plane on the radiation characteristics are explored. The development of a pressurized radome allows for operation at 73.6 kV, significantly higher than previous studies

    InGaN nano-ring structures for high-efficiency light emitting diodes

    Get PDF
    A technique based on the Fresnel diffraction effect for the fabrication of nano-scale site-controlled ring structures in InGaN/GaN multi-quantum well structures has been demonstrated. The ring structures have an internal diameter of 500 nm and a wall width of 300 nm. A 1 cm-1 Raman shift has been measured, signifying substantial strain relaxation from the fabricated structure. The 9 nm blueshift observed in the cathodoluminescence spectra can be attributed to band filling and/or screening of the piezoelectric field. A light emitting diode based on this geometry has been demonstrated. © 2005 American Institute of Physics.published_or_final_versio

    Age-related differences in adaptation during childhood: The influences of muscular power production and segmental energy flow caused by muscles

    Get PDF
    Acquisition of skillfulness is not only characterized by a task-appropriate application of muscular forces but also by the ability to adapt performance to changing task demands. Previous research suggests that there is a different developmental schedule for adaptation at the kinematic compared to the neuro-muscular level. The purpose of this study was to determine how age-related differences in neuro-muscular organization affect the mechanical construction of pedaling at different levels of the task. By quantifying the flow of segmental energy caused by muscles, we determined the muscular synergies that construct the movement outcome across movement speeds. Younger children (5-7 years; n = 11), older children (8-10 years; n = 8), and adults (22-31 years; n = 8) rode a stationary ergometer at five discrete cadences (60, 75, 90, 105, and 120 rpm) at 10% of their individually predicted peak power output. Using a forward dynamics simulation, we determined the muscular contributions to crank power, as well as muscular power delivered to the crank directly and indirectly (through energy absorption and transfer) during the downstroke and the upstroke of the crank cycle. We found significant age × cadence interactions for (1) peak muscular power at the hip joint [Wilks' Lambda = 0.441, F(8,42) = 2.65, p = 0.019] indicating that at high movement speeds children produced less peak power at the hip than adults, (2) muscular power delivered to the crank during the downstroke and the upstroke of the crank cycle [Wilks' Lambda = 0.399, F(8,42) = 3.07, p = 0.009] indicating that children delivered a greater proportion of the power to the crank during the upstroke when compared to adults, (3) hip power contribution to limb power [Wilks' Lambda = 0.454, F(8,42) = 2.54, p = 0.023] indicating a cadence-dependence of age-related differences in the muscular synergy between hip extensors and plantarflexors. The results demonstrate that in spite of a successful performance, children construct the task of pedaling differently when compared to adults, especially when they are pushed to their performance limits. The weaker synergy between hip extensors and plantarflexors suggests that a lack of inter-muscular coordination, rather than muscular power production per se, is a factor that limits children's performance ranges

    Innovator resilience potential: A process perspective of individual resilience as influenced by innovation project termination

    Get PDF
    Innovation projects fail at an astonishing rate. Yet, the negative effects of innovation project failures on the team members of these projects have been largely neglected in research streams that deal with innovation project failures. After such setbacks, it is vital to maintain or even strengthen project members’ innovative capabilities for subsequent innovation projects. For this, the concept of resilience, i.e. project members’ potential to positively adjust (or even grow) after a setback such as an innovation project failure, is fundamental. We develop the second-order construct of innovator resilience potential, which consists of six components – self-efficacy, outcome expectancy, optimism, hope, self-esteem, and risk propensity – that are important for project members’ potential of innovative functioning in innovation projects subsequent to a failure. We illustrate our theoretical findings by means of a qualitative study of a terminated large-scale innovation project, and derive implications for research and management

    The evolutionary ecology of decorating behaviour

    Get PDF
    Many animals decorate themselves through the accumulation of environmental material on their exterior. Decoration has been studied across a range of different taxa, but there are substantial limits to current understanding. Decoration in non-humans appears to function predominantly in defence against predators and parasites, although an adaptive function is often assumed rather than comprehensively demonstrated. It seems predominantly an aquatic phenomenon-presumably because buoyancy helps reduce energetic costs associated with carrying the decorative material. In terrestrial examples, decorating is relatively common in the larval stages of insects. Insects are small and thus able to generate the power to carry a greater mass of material relative to their own body weight. In adult forms, the need to be lightweight for flight probably rules out decoration. We emphasize that both benefits and costs to decoration are rarely quantified, and that costs should include those associated with collecting as well as carrying the material.PostprintPeer reviewe

    RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis

    Get PDF
    Background Mean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR) on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER) were analyzed under different conditions of exponential growth. Results It was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes). Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms. Conclusion Our results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and increased transcription of cellular maintenance genes at the expense of growth related genes. The strong link between P:N stoichiometry, RNA:protein ratio, ribosomal requirement for protein synthesis, and growth rate of microorganisms indicated by the study could be used to characterize the N and P economy of complex ecosystems such as soils and the oceans

    Growth of sulfate-reducing bacteria in the high concentrations of iron ions

    Get PDF
    Sulphate-reducing bacteria (SRB) are anaerobic microorganisms that use sulphate as a terminal electron acceptor in, for example, the degradation of organic compounds. They are ubiquitous in anoxic habitats, where they have an important role in both the sulphur and carbon cycles. SRB can cause a serious problem for industries, such as the offshore oil industry, because of the production of sulphide, which is highly reactive, corrosive and toxic. However, these organisms can also be beneficial by removing sulphate and heavy metals from waste streams. Although SRB have been studied for more than a century, it is only with the recent emergence of new molecular biological and genomic techniques that we have begun to obtain detailed information on their way of life

    Vector boson pair production at the LHC

    Get PDF
    We present phenomenological results for vector boson pair production at the LHC, obtained using the parton-level next-to-leading order program MCFM. We include the implementation of a new process in the code, pp -> \gamma\gamma, and important updates to existing processes. We incorporate fragmentation contributions in order to allow for the experimental isolation of photons in \gamma\gamma, W\gamma, and Z\gamma production and also account for gluon-gluon initial state contributions for all relevant processes. We present results for a variety of phenomenological scenarios, at the current operating energy of \sqrt{s} = 7 TeV and for the ultimate machine goal, \sqrt{s} = 14 TeV. We investigate the impact of our predictions on several important distributions that enter into searches for new physics at the LHC.Comment: 35 pages, 14 figure
    corecore